Suppr超能文献

¹⁸F-FDG PET/CT代谢参数预测肺腺癌表皮生长因子受体突变状态及预后的相关性研究

Correlations Study Between F-FDG PET/CT Metabolic Parameters Predicting Epidermal Growth Factor Receptor Mutation Status and Prognosis in Lung Adenocarcinoma.

作者信息

Yang Bin, Wang Qing Gen, Lu Mengjie, Ge Yingqian, Zheng Yu Jun, Zhu Hong, Lu Guangming

机构信息

Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.

Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, China.

出版信息

Front Oncol. 2019 Jul 18;9:589. doi: 10.3389/fonc.2019.00589. eCollection 2019.

Abstract

This study assessed the ability of metabolic parameters from Fluorodeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) and clinicopathological data to predict epidermal growth factor receptor (EGFR) expression/mutation status in patients with lung adenocarcinoma and to develop a prognostic model based on differences in expression status, to enable individualized targeted molecular therapy. Metabolic parameters and clinicopathological data from 200 patients diagnosed with lung adenocarcinoma between July 2009 and November 2016, who underwent F-FDG PET/CT and mutation testing, were retrospectively evaluated. Multivariate logistic regression was applied to significant variables to establish a prediction model for mutation status. Overall survival for both mutant and wild-type was analyzed to establish a multifactor Cox regression model. Of the 200 patients, 115 (58%) exhibited mutations and 85 (42%) were wild-type. Among selected metabolic parameters, metabolic tumor volume (MTV) demonstrated a significant difference between wild-type and mutant mutation status, with an area under the receiver operating characteristic curve (AUC) of 0.60, which increased to 0.70 after clinical data (smoking status) were combined. Survival analysis of wild-type and mutant yielded mean survival times of 34.451 (95% CI 28.654-40.249) and 53.714 (95% CI 44.331-63.098) months, respectively. Multivariate Cox regression revealed that mutation type, tumor stage, and thyroid transcription factor-1 (TTF-1) expression status were the main factors influencing patient prognosis. The hazard ratio for mutant was 0.511 (95% CI 0.303-0.862) times that of wild-type, and the risk of death was lower for mutant than for wild-type. The risk of death was lower in TTF-1-positive than in TTF-1-negative patients. F-FDG PET/CT metabolic parameters combined with clinicopathological data demonstrated moderate diagnostic efficacy in predicting mutation status and were associated with prognosis in mutant and wild-type non-small-cell lung cancer (NSCLC), thus providing a reference for individualized targeted molecular therapy.

摘要

本研究评估了氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(F-FDG PET/CT)的代谢参数及临床病理数据预测肺腺癌患者表皮生长因子受体(EGFR)表达/突变状态的能力,并基于表达状态差异建立预后模型,以实现个体化靶向分子治疗。对200例在2009年7月至2016年11月期间被诊断为肺腺癌且接受了F-FDG PET/CT检查及突变检测的患者的代谢参数和临床病理数据进行回顾性评估。对显著变量应用多因素逻辑回归来建立突变状态预测模型。分析突变型和野生型的总生存期以建立多因素Cox回归模型。在这200例患者中,115例(58%)表现出突变,85例(42%)为野生型。在选定的代谢参数中,代谢肿瘤体积(MTV)在野生型和突变型突变状态之间显示出显著差异,受试者操作特征曲线下面积(AUC)为0.60,在合并临床数据(吸烟状态)后增至0.70。野生型和突变型的生存分析得出平均生存时间分别为34.451(95%CI 28.654 - 40.249)个月和53.714(95%CI 44.331 - 63.098)个月。多因素Cox回归显示,突变类型、肿瘤分期和甲状腺转录因子-1(TTF-1)表达状态是影响患者预后的主要因素。突变型的风险比是野生型的0.511(95%CI 0.303 - 0.862)倍,突变型的死亡风险低于野生型。TTF-1阳性患者的死亡风险低于TTF-1阴性患者。F-FDG PET/CT代谢参数联合临床病理数据在预测突变状态方面显示出中等诊断效能,并且与突变型和野生型非小细胞肺癌(NSCLC)的预后相关,从而为个体化靶向分子治疗提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e60/6657738/9b4b72bc40cd/fonc-09-00589-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验