Liu Zhaogeng, Ji Feng, Yang Jielong, Cao Xiaofeng, Zhang Muhan, Chen Hechang, Chang Yi
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):11720-11733. doi: 10.1109/TNNLS.2024.3405898. Epub 2024 Sep 3.
Many graph neural networks (GNNs) are inapplicable when the graph structure representing the node relations is unavailable. Recent studies have shown that this problem can be effectively solved by jointly learning the graph structure and the parameters of GNNs. However, most of these methods learn graphs by using either a Euclidean or hyperbolic metric, which means that the space curvature is assumed to be either constant zero or constant negative. Graph embedding spaces usually have nonconstant curvatures, and thus, such an assumption may produce some obfuscatory nodes, which are improperly embedded and close to multiple categories. In this article, we propose a joint-space graph learning (JSGL) method for GNNs. JSGL learns a graph based on Euclidean embeddings and identifies Euclidean obfuscatory nodes. Then, the graph topology near the identified obfuscatory nodes is refined in hyperbolic space. We also present a theoretical justification of our method for identifying obfuscatory nodes and conduct a series of experiments to test the performance of JSGL. The results show that JSGL outperforms many baseline methods. To obtain more insights, we analyze potential reasons for this superior performance.
当表示节点关系的图结构不可用时,许多图神经网络(GNN)都不适用。最近的研究表明,通过联合学习图结构和GNN的参数,可以有效解决这个问题。然而,这些方法大多通过使用欧几里得度量或双曲度量来学习图,这意味着空间曲率被假定为恒定为零或恒定为负。图嵌入空间通常具有非恒定的曲率,因此,这样的假设可能会产生一些混淆节点,这些节点被错误地嵌入并且接近多个类别。在本文中,我们提出了一种用于GNN的联合空间图学习(JSGL)方法。JSGL基于欧几里得嵌入学习图,并识别欧几里得混淆节点。然后,在双曲空间中细化已识别的混淆节点附近的图拓扑。我们还给出了我们识别混淆节点方法的理论依据,并进行了一系列实验来测试JSGL的性能。结果表明,JSGL优于许多基线方法。为了获得更多见解,我们分析了这种优越性能的潜在原因。