Suppr超能文献

基于对抗图神经网络的脑图谱超分辨率及其在功能脑连接中的应用。

Brain graph super-resolution using adversarial graph neural network with application to functional brain connectivity.

机构信息

BASIRA lab, Faculty of Computer and Informatics Engineering, Istanbul Technical University, Istanbul, Turkey. Electronic address: http://basira-lab.com/.

BASIRA lab, Faculty of Computer and Informatics Engineering, Istanbul Technical University, Istanbul, Turkey; School of Science and Engineering, Computing, University of Dundee, UK.

出版信息

Med Image Anal. 2021 Jul;71:102084. doi: 10.1016/j.media.2021.102084. Epub 2021 Apr 21.

Abstract

Brain image analysis has advanced substantially in recent years with the proliferation of neuroimaging datasets acquired at different resolutions. While research on brain image super-resolution has undergone a rapid development in the recent years, brain graph super-resolution is still poorly investigated because of the complex nature of non-Euclidean graph data. In this paper, we propose the first-ever deep graph super-resolution (GSR) framework that attempts to automatically generate high-resolution (HR) brain graphs with N nodes (i.e., anatomical regions of interest (ROIs)) from low-resolution (LR) graphs with N nodes where N<N. First, we formalize our GSR problem as a node feature embedding learning task. Once the HR nodes' embeddings are learned, the pairwise connectivity strength between brain ROIs can be derived through an aggregation rule based on a novel Graph U-Net architecture. While typically the Graph U-Net is a node-focused architecture where graph embedding depends mainly on node attributes, we propose a graph-focused architecture where the node feature embedding is based on the graph topology. Second, inspired by graph spectral theory, we break the symmetry of the U-Net architecture by super-resolving the low-resolution brain graph structure and node content with a GSR layer and two graph convolutional network layers to further learn the node embeddings in the HR graph. Third, to handle the domain shift between the ground-truth and the predicted HR brain graphs, we incorporate adversarial regularization to align their respective distributions. Our proposed AGSR-Net framework outperformed its variants for predicting high-resolution functional brain graphs from low-resolution ones. Our AGSR-Net code is available on GitHub at https://github.com/basiralab/AGSR-Net.

摘要

近年来,随着在不同分辨率下获取的神经影像学数据集的激增,脑影像分析取得了实质性的进展。尽管近年来脑影像超分辨率研究发展迅速,但由于非欧几里得图数据的复杂性,脑图超分辨率仍然研究甚少。在本文中,我们提出了第一个深度图超分辨率(GSR)框架,该框架试图从低分辨率(LR)图(即 N 个节点(即感兴趣的解剖区域(ROI))自动生成具有 N 个节点的高分辨率(HR)脑图,其中 N<N。首先,我们将我们的 GSR 问题形式化为节点特征嵌入学习任务。一旦学习到 HR 节点的嵌入,就可以通过基于新的图 U-Net 架构的聚合规则得出脑 ROI 之间的成对连接强度。虽然通常情况下,图 U-Net 是一个以节点为中心的架构,其中图嵌入主要依赖于节点属性,但我们提出了一个以图为中心的架构,其中节点特征嵌入基于图拓扑结构。其次,受图谱理论的启发,我们通过使用 GSR 层和两个图卷积网络层来超分辨率低分辨率脑图结构和节点内容,打破 U-Net 架构的对称性,以进一步学习 HR 图中的节点嵌入。第三,为了处理真实 HR 脑图和预测 HR 脑图之间的域偏移,我们引入对抗正则化来对齐它们各自的分布。我们提出的 AGSR-Net 框架在从低分辨率预测高分辨率功能脑图方面优于其变体。我们的 AGSR-Net 代码可在 GitHub 上获得,网址为 https://github.com/basiralab/AGSR-Net。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验