Suppr超能文献

BiS/MoS/BiMoO 三元异质结构多孔薄膜的可控合成及优异的光电催化性能。

Controlled synthesis and exceptional photoelectrocatalytic properties of BiS/MoS/BiMoO ternary hetero-structured porous film.

机构信息

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.

出版信息

J Colloid Interface Sci. 2019 Nov 1;555:214-223. doi: 10.1016/j.jcis.2019.07.097. Epub 2019 Jul 30.

Abstract

In this work, BiS/MoS/BiMoO hetero-structured porous films were fabricated via a facile anion exchange process using the as-prepared BiMoO nanoflake array film as substrate material. The formation of BiS/MoS/BiMoO ternary hetero-structured porous film is both thermodynamically controllable and reaction time dependent. Systematic experiments were done to investigate the products at each reaction stage and disclose the relationships between the composite components and reaction temperature and time. The study showed that the energy barrier need to be overpassed when MoS and BiS were simultaneously produced. The optimized BiS/MoS/BiMoO photoelectrode exhibited significantly higher photoelectrocatalytic efficiency than BiMoO, binary BiS/BiMoO and BiS/MoS photoelectrodes. The remarkable degradation efficiency of the BiS/MoS/BiMoO photoelectrode comes from the synergy of high quality assembly and heterostructure interfaces between the three components. The optimized film assembly and stepwise band alignment in the ternary heterostructure composite contribute to visible light utilization, transport and separation of charge carriers, mass transport, and accessibility of active sites. The generated active species such as superoxide anions (O) and holes were detected to promote the decomposition of organic pollutants. The reasonable photoeletrocatalytic degradation mechanism was also proposed.

摘要

在这项工作中,通过使用预先制备的 BiMoO 纳米片阵列薄膜作为基底材料,通过简便的阴离子交换过程制备了 BiS/MoS/BiMoO 异质结构多孔薄膜。BiS/MoS/BiMoO 三元异质结构多孔薄膜的形成既具有热力学可控性又与反应时间有关。进行了系统的实验来研究每个反应阶段的产物,并揭示了复合成分与反应温度和时间之间的关系。研究表明,当同时生成 MoS 和 BiS 时需要克服能垒。优化后的 BiS/MoS/BiMoO 光电电极的光电催化效率明显高于 BiMoO、二元 BiS/BiMoO 和 BiS/MoS 光电电极。BiS/MoS/BiMoO 光电电极具有显著的降解效率,这得益于三种成分之间高质量组装和异质结构界面的协同作用。优化后的薄膜组装和三元异质结构复合材料中的逐步能带排列有助于可见光的利用、载流子的传输和分离、质量传输以及活性位点的可及性。检测到生成的活性物质,如超氧阴离子(O)和空穴,以促进有机污染物的分解。还提出了合理的光电催化降解机理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验