Ren Jing, Hu Tingting, Gong Qinghua, Wang Qian, Sun Bin, Gao Tingting, Cao Pei, Zhou Guowei
Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
Nanomaterials (Basel). 2020 Sep 11;10(9):1813. doi: 10.3390/nano10091813.
Exploiting excellent photocatalytic activity and stable heterostructure composites are of critical importance for environmental sustainability. The spherical BiWO/BiS/MoS n-p heterojunction is first prepared via an in situ hydrothermal method using BiWO, NaMoO·2HO, and CHNS, in which the intermediate phase BiS is formed due to chemical coupling interaction of BiWO and CHNS. Scanning electron microscopy indicates that the compactness of the sample can be easily adjusted by changing the contents of S and Mo sources in the solution. The results of ultraviolet-visible (UV-vis) diffuse reflectance spectra, photoluminescence, transient photocurrent response, and electrochemical impedance spectra indicate that the formation of heterojunctions contributes to enhancing visible-light utilization and promoting photogenerated carrier separation and transfer. The composite material is used as a catalyst for the visible light photocatalytic reduction of Cr(VI). Remarkably, the optimal BiWO/BiS/MoS n-p heterojunction achieves the greatest Cr(VI) reduction rate of 100% within 75 min ( > 420 nm, pH = 2); this rate is considerably better than the Cr(VI) reduction rate of pure BiWO. The recycling experiment also reveals that the photocatalytic performance of the n-p heterojunction toward Cr(VI) is still maintained at 80% after three cycles, indicating that the n-p heterojunction has excellent structural stability. The capture experiment proves that the main active species in the system are electrons. The reasonable mechanism of BiWO/BiS/MoS photocatalytic reduction Cr(VI) is proposed. Our work provides new research ideas for the design of ternary heterojunction composites and new strategies for the development of photocatalysts for wastewater treatment.
开发具有优异光催化活性和稳定异质结构的复合材料对于环境可持续性至关重要。首先通过原位水热法,使用BiWO₄、Na₂MoO₄·2H₂O和硫脲制备了球形BiWO₄/Bi₂S₃/MoS₂ n-p异质结,其中由于BiWO₄与硫脲的化学耦合相互作用形成了中间相Bi₂S₃。扫描电子显微镜表明,通过改变溶液中S和Mo源的含量可以轻松调节样品的致密性。紫外可见(UV-vis)漫反射光谱、光致发光、瞬态光电流响应和电化学阻抗谱的结果表明,异质结的形成有助于提高可见光利用率并促进光生载流子的分离和转移。该复合材料用作可见光光催化还原Cr(VI)的催化剂。值得注意的是,最佳的BiWO₄/Bi₂S₃/MoS₂ n-p异质结在75分钟内(>420 nm,pH = 2)实现了100%的最大Cr(VI)还原率;该速率明显优于纯BiWO₄的Cr(VI)还原率。循环实验还表明,n-p异质结对Cr(VI)的光催化性能在三个循环后仍保持在80%,表明n-p异质结具有优异的结构稳定性。捕获实验证明系统中的主要活性物种是电子。提出了BiWO₄/Bi₂S₃/MoS₂光催化还原Cr(VI)的合理机制。我们的工作为三元异质结复合材料的设计提供了新的研究思路,为开发用于废水处理的光催化剂提供了新策略。