Tezcan Fatih, Ahmad Abrar, Kardaş Gülfeza
Department of Chemistry and Chemical Process Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkiye.
Department of Chemistry, Faculty of Arts and Sciences, Çukurova University, Adana, Turkiye.
Turk J Chem. 2025 Feb 17;49(2):176-190. doi: 10.55730/1300-0527.3720. eCollection 2025.
This study presents a ternary WO/α-FeO/BiS photoanode system suitable for photoelectrochemical water-splitting applications. WO/α-FeO heterojunction is obtained using a hydrothermal approach, while BiS is deposited onto WO/α-FeO via the successive ionic layer adsorption and reaction (SILAR) method. The cycle count is adjusted to determine the optimal photocatalytic photoanode. X-ray diffraction analysis confirms different morphologies and phases for the photoelectrodes: WO is deposited as plates with monoclinic phases, α-FeO as nanorods with hexagonal phases, and BiS in the form of nanoparticles (NPs) with orthorhombic phases. Solar light absorption spectra indicate that ternary WO/α-FeO/BiS photoanodes absorb a larger portion of the solar spectrum and display a large red shift in wavelength compared to binary WO/α-FeO photoanodes. Chronoamperometric and electrochemical impedance spectroscopy measurements indicate that the as-prepared WO/α-FeO/BiS photoanode exhibits notable stability and low charge transfer resistance (R) compared to binary electrodes and pristine WO plates in faradaic photoelectrochemical conversion for the oxygen evolution reaction and S/S processes. Linear sweep voltammetry studies show that the WO/α-FeO/BiS photoanode, sensitized with 8 SILAR cycles, achieves the maximum photocurrent density of 5.777 mA.cm at 1.0 V vs. RHE under 100 mW cm simulated solar irradiation.
本研究提出了一种适用于光电化学水分解应用的三元WO/α-FeO/BiS光阳极体系。采用水热法制备WO/α-FeO异质结,而BiS通过连续离子层吸附和反应(SILAR)法沉积在WO/α-FeO上。调整循环次数以确定最佳光催化光阳极。X射线衍射分析证实了光电极的不同形态和相:WO以单斜相的板状沉积,α-FeO以六方相的纳米棒状沉积,BiS以正交相的纳米颗粒(NP)形式存在。太阳光吸收光谱表明,与二元WO/α-FeO光阳极相比,三元WO/α-FeO/BiS光阳极吸收了更大比例的太阳光谱,并且在波长上显示出较大的红移。计时电流法和电化学阻抗谱测量表明,与二元电极和原始WO板相比,所制备的WO/α-FeO/BiS光阳极在氧析出反应和S/S过程的法拉第光电化学转换中表现出显著的稳定性和低电荷转移电阻(R)。线性扫描伏安法研究表明,在100 mW/cm模拟太阳辐射下,经过8次SILAR循环敏化的WO/α-FeO/BiS光阳极在相对于可逆氢电极(RHE)为1.0 V时实现了5.777 mA/cm的最大光电流密度。