Suppr超能文献

磁性纳米颗粒在感染生物膜中形成的人工通道增强了抗生素对细菌的杀伤作用。

Artificial Channels in an Infectious Biofilm Created by Magnetic Nanoparticles Enhanced Bacterial Killing by Antibiotics.

机构信息

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.

Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, 9713 AV, Groningen, The Netherlands.

出版信息

Small. 2019 Sep;15(39):e1902313. doi: 10.1002/smll.201902313. Epub 2019 Aug 6.

Abstract

The poor penetrability of many biofilms contributes to the recalcitrance of infectious biofilms to antimicrobial treatment. Here, a new application for the use of magnetic nanoparticles in nanomedicine to create artificial channels in infectious biofilms to enhance antimicrobial penetration and bacterial killing is proposed. Staphylococcus aureus biofilms are exposed to magnetic-iron-oxide nanoparticles (MIONPs), while magnetically forcing MIONP movement through the biofilm. Confocal laser scanning microscopy demonstrates artificial channel digging perpendicular to the substratum surface. Artificial channel digging significantly (4-6-fold) enhances biofilm penetration and bacterial killing efficacy by gentamicin in two S. aureus strains with and without the ability to produce extracellular polymeric substances. Herewith, this work provides a simple, new, and easy way to enhance the eradication of infectious biofilms using MIONPs combined with clinically applied antibiotic therapies.

摘要

许多生物膜的渗透性差导致感染性生物膜对抗菌治疗具有顽固性。在这里,提出了将磁性纳米粒子在纳米医学中的新应用,即在感染性生物膜中创建人工通道,以增强抗菌渗透和杀菌效果。金黄色葡萄球菌生物膜暴露于磁性氧化铁纳米颗粒(MIONP),同时通过磁场迫使 MIONP 通过生物膜移动。共聚焦激光扫描显微镜显示垂直于基底表面的人工通道挖掘。人工通道挖掘显著(4-6 倍)提高了两种金黄色葡萄球菌菌株的生物膜渗透性和杀菌效果,这些菌株具有或不具有产生细胞外聚合物的能力。因此,本工作提供了一种简单、新颖、简便的方法,可使用 MIONP 结合临床应用的抗生素疗法增强感染性生物膜的清除。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验