The Nanomedicine Laboratory, School of Engineering, Brown University, Providence, RI, USA.
Int J Nanomedicine. 2013;8:731-6. doi: 10.2147/IJN.S38256. Epub 2013 Feb 20.
Biofilms formed by antibiotic resistant Staphylococcus aureus (S. aureus) continue to be a problem for medical devices. Antibiotic resistant bacteria (such as S. aureus) often complicate the treatment and healing of the patient, yet, medical devices are needed to heal such patients. Therefore, methods to treat these Biofilms once formed on medical devices are badly needed. Due to their small size and magnetic properties, superparamagnetic iron oxide nanoparticles (SPION) may be one possible material to penetrate Biofilms and kill or slow the growth of bacteria. In this study, SPION were functionalized with amine, carboxylate, and isocyanate functional groups to further improve their efficacy to disrupt the growth of S. aureus Biofilms. Without the use of antibiotics, results showed that SPION functionalized with carboxylate groups (followed by isocyanate then amine functional groups then unfunctionalized SPION) significantly disrupted Biofilms and retarded the growth of S. aureus compared to untreated Biofilms (by over 35% after 24 hours).
由抗生素耐药金黄色葡萄球菌 (S. aureus) 形成的生物膜仍然是医疗器械的一个问题。抗生素耐药细菌(如 S. aureus)常常使患者的治疗和康复变得复杂,但需要医疗器械来治疗此类患者。因此,迫切需要治疗医疗器械上形成的这些生物膜的方法。由于其体积小且具有磁性,超顺磁氧化铁纳米粒子 (SPION) 可能是一种穿透生物膜并杀死或减缓细菌生长的可能材料。在这项研究中,SPION 用胺、羧酸盐和异氰酸酯官能团进行了功能化,以进一步提高其破坏金黄色葡萄球菌生物膜生长的功效。在不使用抗生素的情况下,结果表明,用羧酸盐官能团(随后是异氰酸酯然后是胺官能团然后是未官能化的 SPION)功能化的 SPION 可显著破坏生物膜并延缓金黄色葡萄球菌的生长,与未经处理的生物膜相比(24 小时后超过 35%)。