Suppr超能文献

利用多种纵向结局特征和生存数据对阿尔茨海默病进展进行动态预测。

Dynamic prediction of Alzheimer's disease progression using features of multiple longitudinal outcomes and time-to-event data.

机构信息

Merck Research Lab, Merck & Co, North Wales, Pennsylvania.

Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina.

出版信息

Stat Med. 2019 Oct 30;38(24):4804-4818. doi: 10.1002/sim.8334. Epub 2019 Aug 6.

Abstract

This paper is motivated by combining serial neurocognitive assessments and other clinical variables for monitoring the progression of Alzheimer's disease (AD). We propose a novel framework for the use of multiple longitudinal neurocognitive markers to predict the progression of AD. The conventional joint modeling longitudinal and survival data approach is not applicable when there is a large number of longitudinal outcomes. We introduce various approaches based on functional principal component for dimension reduction and feature extraction from multiple longitudinal outcomes. We use these features to extrapolate the health outcome trajectories and use scores on these features as predictors in a Cox proportional hazards model to conduct predictions over time. We propose a personalized dynamic prediction framework that can be updated as new observations collected to reflect the patient's latest prognosis, and thus intervention could be initiated in a timely manner. Simulation studies and application to the Alzheimer's Disease Neuroimaging Initiative dataset demonstrate the robustness of the method for the prediction of future health outcomes and risks of target events under various scenarios.

摘要

本文旨在结合一系列神经认知评估和其他临床变量来监测阿尔茨海默病(AD)的进展。我们提出了一种新的框架,用于使用多个纵向神经认知标志物来预测 AD 的进展。当存在大量纵向结果时,传统的联合建模纵向和生存数据方法并不适用。我们引入了基于功能主成分的各种方法,用于从多个纵向结果中进行降维和特征提取。我们使用这些特征来推断健康结果轨迹,并将这些特征上的得分作为 Cox 比例风险模型中的预测因子,以随时间进行预测。我们提出了一种个性化的动态预测框架,可以随着新观察结果的收集进行更新,以反映患者的最新预后,从而可以及时进行干预。模拟研究和对阿尔茨海默病神经影像学倡议数据集的应用表明,该方法在各种情况下预测未来健康结果和目标事件风险的稳健性。

相似文献

2
Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: An application to Alzheimer's disease.
Stat Methods Med Res. 2019 Feb;28(2):327-342. doi: 10.1177/0962280217722177. Epub 2017 Jul 28.
3
Functional survival forests for multivariate longitudinal outcomes: Dynamic prediction of Alzheimer's disease progression.
Stat Methods Med Res. 2021 Jan;30(1):99-111. doi: 10.1177/0962280220941532. Epub 2020 Jul 29.
4
Functional joint model for longitudinal and time-to-event data: an application to Alzheimer's disease.
Stat Med. 2017 Sep 30;36(22):3560-3572. doi: 10.1002/sim.7381. Epub 2017 Jun 30.
5
A prognostic model of Alzheimer's disease relying on multiple longitudinal measures and time-to-event data.
Alzheimers Dement. 2018 May;14(5):644-651. doi: 10.1016/j.jalz.2017.11.004. Epub 2018 Jan 4.
6
Modeling and prediction of clinical symptom trajectories in Alzheimer's disease using longitudinal data.
PLoS Comput Biol. 2018 Sep 14;14(9):e1006376. doi: 10.1371/journal.pcbi.1006376. eCollection 2018 Sep.
8
9
Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer's Disease.
Neuroinformatics. 2019 Jan;17(1):43-61. doi: 10.1007/s12021-018-9380-2.

引用本文的文献

5
A comparative study of methods for dynamic survival analysis.
Front Neurol. 2025 Feb 18;16:1504535. doi: 10.3389/fneur.2025.1504535. eCollection 2025.
6
Characterizing heterogeneity in Alzheimer's disease progression: a semiparametric model.
Sci Rep. 2025 Mar 5;15(1):7660. doi: 10.1038/s41598-025-92540-5.
8
Dynamic prediction of survival using multivariate functional principal component analysis: A strict landmarking approach.
Stat Methods Med Res. 2024 Feb;33(2):256-272. doi: 10.1177/09622802231224631. Epub 2024 Jan 9.

本文引用的文献

1
The c-index is not proper for the evaluation of $t$-year predicted risks.
Biostatistics. 2019 Apr 1;20(2):347-357. doi: 10.1093/biostatistics/kxy006.
2
Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: An application to Alzheimer's disease.
Stat Methods Med Res. 2019 Feb;28(2):327-342. doi: 10.1177/0962280217722177. Epub 2017 Jul 28.
3
Functional joint model for longitudinal and time-to-event data: an application to Alzheimer's disease.
Stat Med. 2017 Sep 30;36(22):3560-3572. doi: 10.1002/sim.7381. Epub 2017 Jun 30.
5
Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials.
Alzheimers Dement. 2017 Apr;13(4):e1-e85. doi: 10.1016/j.jalz.2016.11.007. Epub 2017 Mar 22.
7
Dementia: timely diagnosis and early intervention.
BMJ. 2015 Jun 16;350:h3029. doi: 10.1136/bmj.h3029.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验