Suppr超能文献

前列腺癌复发的个体化动态预测(无论是否开始二次治疗):模型开发与验证

Individualized dynamic prediction of prostate cancer recurrence with and without the initiation of a second treatment: Development and validation.

作者信息

Sène Mbéry, Taylor Jeremy Mg, Dignam James J, Jacqmin-Gadda Hélène, Proust-Lima Cécile

机构信息

INSERM, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France.

Université de Bordeaux, ISPED, Bordeaux, France.

出版信息

Stat Methods Med Res. 2016 Dec;25(6):2972-2991. doi: 10.1177/0962280214535763. Epub 2014 May 20.

Abstract

With the emergence of rich information on biomarkers after treatments, new types of prognostic tools are being developed: dynamic prognostic tools that can be updated at each new biomarker measurement. Such predictions are of interest in oncology where after an initial treatment, patients are monitored with repeated biomarker data. However, in such setting, patients may receive second treatments to slow down the progression of the disease. This paper aims to develop and validate dynamic individual predictions that allow the possibility of a new treatment in order to help understand the benefit of initiating new treatments during the monitoring period. The prediction of the event in the next x years is done under two scenarios: (1) the patient initiates immediately a second treatment, (2) the patient does not initiate any treatment in the next x years. Predictions are derived from shared random-effect models. Applied to prostate cancer data, different specifications for the dependence between the prostate-specific antigen repeated measures, the initiation of a second treatment (hormonal therapy), and the risk of clinical recurrence are investigated and compared. The predictive accuracy of the dynamic predictions is evaluated with two measures (Brier score and prognostic cross-entropy) for which approximated cross-validated estimators are proposed.

摘要

随着治疗后生物标志物丰富信息的出现,新型预后工具正在被开发出来:即动态预后工具,它可以在每次新的生物标志物测量时进行更新。这种预测在肿瘤学中很有意义,在初始治疗后,患者会通过重复的生物标志物数据进行监测。然而,在这种情况下,患者可能会接受二次治疗以减缓疾病进展。本文旨在开发并验证动态个体预测,这种预测考虑了进行新治疗的可能性,以帮助理解在监测期内启动新治疗的益处。对未来x年事件的预测是在两种情况下进行的:(1)患者立即开始二次治疗;(2)患者在未来x年内不进行任何治疗。预测是从共享随机效应模型得出的。应用于前列腺癌数据时,研究并比较了前列腺特异性抗原重复测量、二次治疗(激素治疗)的启动以及临床复发风险之间相关性的不同设定。动态预测的预测准确性通过两种指标(Brier评分和预后交叉熵)进行评估,并针对这两种指标提出了近似交叉验证估计量。

相似文献

3
Joint models for dynamic prediction in localised prostate cancer: a literature review.
BMC Med Res Methodol. 2022 Sep 19;22(1):245. doi: 10.1186/s12874-022-01709-3.
4
The utility of PSA doubling time to monitor prostate cancer recurrence.
Mayo Clin Proc. 2001 Jun;76(6):571-2. doi: 10.4065/76.6.571.
5
Markers and meaning of primary treatment failure.
Urol Clin North Am. 2003 May;30(2):377-401. doi: 10.1016/s0094-0143(02)00176-3.
7
Real-time individual predictions of prostate cancer recurrence using joint models.
Biometrics. 2013 Mar;69(1):206-13. doi: 10.1111/j.1541-0420.2012.01823.x. Epub 2013 Feb 4.
8
Nomogram Predicting Prostate Cancer-specific Mortality for Men with Biochemical Recurrence After Radical Prostatectomy.
Eur Urol. 2015 Jun;67(6):1160-1167. doi: 10.1016/j.eururo.2014.09.019. Epub 2014 Oct 6.

引用本文的文献

3
Multivariate functional mixed model with MRI data: An application to Alzheimer's disease.
Stat Med. 2023 May 10;42(10):1492-1511. doi: 10.1002/sim.9683. Epub 2023 Feb 20.
5
Joint models for dynamic prediction in localised prostate cancer: a literature review.
BMC Med Res Methodol. 2022 Sep 19;22(1):245. doi: 10.1186/s12874-022-01709-3.
7
Developing and Validating Risk Assessment Models of Clinical Outcomes in Modern Oncology.
JCO Precis Oncol. 2019;3. doi: 10.1200/PO.19.00068. Epub 2019 Oct 24.
8
Individualized dynamic prediction of survival with the presence of intermediate events.
Stat Med. 2019 Dec 30;38(30):5623-5640. doi: 10.1002/sim.8387. Epub 2019 Oct 30.
10
A Prognostic Tool for Individualized Prediction of Graft Failure Risk within Ten Years after Kidney Transplantation.
J Transplant. 2019 Apr 8;2019:7245142. doi: 10.1155/2019/7245142. eCollection 2019.

本文引用的文献

1
Real-time individual predictions of prostate cancer recurrence using joint models.
Biometrics. 2013 Mar;69(1):206-13. doi: 10.1111/j.1541-0420.2012.01823.x. Epub 2013 Feb 4.
2
Choice of prognostic estimators in joint models by estimating differences of expected conditional Kullback-Leibler risks.
Biometrics. 2012 Jun;68(2):380-7. doi: 10.1111/j.1541-0420.2012.01753.x. Epub 2012 May 11.
3
Joint latent class models for longitudinal and time-to-event data: a review.
Stat Methods Med Res. 2014 Feb;23(1):74-90. doi: 10.1177/0962280212445839. Epub 2012 Apr 19.
4
Measures of prediction error for survival data with longitudinal covariates.
Biom J. 2011 Mar;53(2):275-93. doi: 10.1002/bimj.201000145. Epub 2011 Feb 10.
5
Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data.
Biometrics. 2011 Sep;67(3):819-29. doi: 10.1111/j.1541-0420.2010.01546.x. Epub 2011 Feb 9.
10
Prospective accuracy for longitudinal markers.
Biometrics. 2007 Jun;63(2):332-41. doi: 10.1111/j.1541-0420.2006.00726.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验