Department of Neurology, School of Medicine, University of Washington, Seattle, Washington.
Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington.
Glia. 2020 Mar;68(3):455-471. doi: 10.1002/glia.23695. Epub 2019 Aug 6.
Ischemic preconditioning (IPC) is an experimental phenomenon in which a brief ischemic stimulus confers protection against a subsequent prolonged ischemic event. Initially thought to be due to mechanistic changes in neurons, our understanding of IPC has evolved to encompass a global reprogramming of the Central Nervous System (CNS) after transient ischemia/reperfusion that requires innate immune signaling pathways including Toll-like receptors (TLRs) and Type I interferons. Microglia are the CNS resident neuroimmune cells that express these key innate immune receptors. Studies suggest that microglia are required for IPC-mediated neuronal and axonal protection. Multiple paradigms targeting TLRs have converged on a distinctive Type I interferon response in microglia that is critical for preconditioning-mediated protection against ischemia. These pathways can be targeted through administration of TLR agonists, cytokines including interferon-β, and pharmaceutical agents that induce preconditioning through cross-tolerance mechanisms. Transcriptomic analyses and single cell RNA studies point to specific gene expression signatures in microglia that functionally shift these mutable cells to an immunomodulatory or protective phenotype. Although there are technological challenges and gaps in knowledge to overcome, the targeting of specific molecular signaling pathways in microglia is a promising direction for development of novel and effective pharmacotherapies for stroke. Studies on preconditioning in animal models, including nonhuman primates, show promise as prophylactic preconditioning treatments for selected at risk patient populations. In addition, our growing understanding of the mechanisms of IPC-mediated protection is identifying novel cellular and molecular targets for therapeutic interventions that could apply broadly to both acute stroke and chronic vascular cognitive impairment patients.
缺血预处理 (IPC) 是一种实验现象,其中短暂的缺血刺激可保护机体免受随后的长时间缺血事件的影响。最初认为这是由于神经元的机制变化所致,但我们对 IPC 的理解已经发展到包括短暂缺血/再灌注后中枢神经系统 (CNS) 的全局重编程,这需要先天免疫信号通路,包括 Toll 样受体 (TLR) 和 I 型干扰素。小胶质细胞是 CNS 驻留的神经免疫细胞,可表达这些关键的先天免疫受体。研究表明,小胶质细胞是 IPC 介导的神经元和轴突保护所必需的。针对 TLR 的多种范式都集中在小胶质细胞中独特的 I 型干扰素反应上,这对于 IPC 介导的缺血保护至关重要。这些途径可以通过 TLR 激动剂、包括干扰素-β在内的细胞因子以及通过交叉耐受机制诱导 IPC 的药物来靶向。转录组分析和单细胞 RNA 研究表明,小胶质细胞中存在特定的基因表达特征,这些特征可使这些可塑细胞功能转变为免疫调节或保护表型。尽管存在技术挑战和知识差距需要克服,但靶向小胶质细胞中的特定分子信号通路是开发新型有效中风治疗药物的有前途的方向。动物模型(包括非人类灵长类动物)中的预处理研究显示出作为有选择风险的患者群体的预防性预处理治疗的潜力。此外,我们对 IPC 介导的保护机制的认识不断加深,确定了新的细胞和分子治疗靶点,这些靶点可能广泛适用于急性中风和慢性血管性认知障碍患者。