Physics Department, King's College London, London, WC2R 2LS, UK.
Laboratory of Computational Science and Modeling, Institute des Materiaux, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne, Switzerland.
Chemphyschem. 2019 Nov 19;20(22):3037-3044. doi: 10.1002/cphc.201900564. Epub 2019 Sep 3.
We develop a multi-scale approach towards the design of metallic nanoparticles with applications as catalysts in electrochemical reactions. The here discussed method exploits the relationship between nanoparticle architecture and electrochemical activity and is applied to study the catalytic properties of MgO(100)-supported Pt nanosystems undergoing solid-solid and solid-liquid transitions. We observe that a major increment in the activity is associated to the reconstruction of the interface layers, supporting the need for a full geometrical characterisation of such structures also when in-operando.
我们开发了一种针对具有电化学反应催化剂应用的金属纳米粒子设计的多尺度方法。这里讨论的方法利用了纳米粒子结构与电化学活性之间的关系,并应用于研究经历固-固和固-液转变的 MgO(100)负载 Pt 纳米系统的催化性能。我们观察到,活性的大幅提高与界面层的重构有关,这支持了在实际操作中也需要对这种结构进行全面的几何特征描述的需求。