University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
Department of Physics, King's College London, London WC2R 2LS, UK.
Nanoscale. 2018 Jan 25;10(4):2004-2016. doi: 10.1039/c7nr07123j.
We consider finite-size and temperature effects on the structure of model Au clusters (30 ≤ N ≤ 147) bound by the Gupta potential. Equilibrium behaviour is examined in the harmonic superposition approximation, and the size-dependent melting temperature is also bracketed using molecular dynamics simulations. We identify structural transitions between distinctly different morphologies, characterised by various defect features. Reentrant behaviour and trends with respect to cluster size and temperature are discussed in detail. For N = 55, 85, and 147 we visualise the topography of the underlying potential energy landscape using disconnectivity graphs, colour-coded by the cluster morphology; and we use discrete path sampling to characterise the rearrangement mechanisms between competing structures separated by high energy barriers (up to 1 eV). The fastest transition pathways generally involve metastable states with multiple fivefold disclinations and/or a high degree of amorphisation, indicative of melting. For N = 55 we find that reoptimising low-lying minima using density functional theory (DFT) alters their energetic ordering and produces a new putative global minimum at the DFT level; however, the equilibrium structure predicted by the Gupta potential at room temperature is consistent with previous experiments.
我们考虑了有限尺寸和温度对受古普塔势约束的模型 Au 团簇(30≤N≤147)结构的影响。在谐波叠加近似下研究了平衡行为,并使用分子动力学模拟也确定了与尺寸相关的熔点范围。我们确定了具有不同缺陷特征的截然不同形态之间的结构转变。详细讨论了与簇大小和温度有关的再进入行为和趋势。对于 N=55、85 和 147,我们使用不连续性图可视化了潜在势能景观的地形,并用簇形态对其进行了颜色编码;我们使用离散路径采样来描述由高能势垒(高达 1 eV)分隔的竞争结构之间的重排机制。最快的转变途径通常涉及具有多个五重螺旋和/或高度非晶化的亚稳状态,这表明正在发生熔化。对于 N=55,我们发现使用密度泛函理论(DFT)重新优化低能势垒会改变它们的能量顺序,并在 DFT 水平上产生新的可能全局最小值;然而,古普塔势在室温下预测的平衡结构与先前的实验一致。