Suppr超能文献

作为电路复杂性的路径积分优化

Path Integral Optimization as Circuit Complexity.

作者信息

Camargo Hugo A, Heller Michal P, Jefferson Ro, Knaute Johannes

机构信息

Max Planck Institute for Gravitational Physics (Albert Einstein Institute),Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.

Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.

出版信息

Phys Rev Lett. 2019 Jul 3;123(1):011601. doi: 10.1103/PhysRevLett.123.011601.

Abstract

Early efforts to understand complexity in field theory have primarily employed a geometric approach based on the concept of circuit complexity in quantum information theory. In a parallel vein, it has been proposed that certain deformations of the Euclidean path integral that prepare a given operator or state may provide an alternative definition, whose connection to the standard notion of complexity is less apparent. In this Letter, we bridge the gap between these two proposals in two-dimensional conformal field theories, by explicitly showing how the latter approach from path integral optimization may be given by a concrete realization within the standard gate counting framework. In particular, we show that, when the background geometry is deformed by a Weyl rescaling, a judicious gate counting allows one to recover the Liouville action as a particular choice within a more general class of cost functions.

摘要

早期在场论中理解复杂性的努力主要采用了一种基于量子信息论中电路复杂性概念的几何方法。与此同时,有人提出,欧几里得路径积分的某些变形(用于制备给定算符或态)可能提供一种替代定义,其与标准复杂性概念的联系不太明显。在本信函中,我们在二维共形场论中弥合了这两种提议之间的差距,通过明确展示路径积分优化的后一种方法如何能在标准门计数框架内得到具体实现。特别地,我们表明,当背景几何通过外尔重标度变形时,明智的门计数允许人们在更一般的代价函数类中恢复作为一种特殊选择的刘维尔作用量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验