Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, 85721.
Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, 85721.
J Biol Chem. 2019 Oct 4;294(40):14634-14647. doi: 10.1074/jbc.RA118.005098. Epub 2019 Aug 6.
Mutations in the cardiac thin filament (TF) have highly variable effects on the regulatory function of the cardiac sarcomere. Understanding the molecular-level dysfunction elicited by TF mutations is crucial to elucidate cardiac disease mechanisms. The hypertrophic cardiomyopathy-causing cardiac troponin T (cTnT) mutation Δ160Glu (Δ160E) is located in a putative "hinge" adjacent to an unstructured linker connecting domains TNT1 and TNT2. Currently, no high-resolution structure exists for this region, limiting significantly our ability to understand its role in myofilament activation and the molecular mechanism of mutation-induced dysfunction. Previous regulated motility data have indicated mutation-induced impairment of weak actomyosin interactions. We hypothesized that cTnT-Δ160E repositions the flexible linker, altering weak actomyosin electrostatic binding and acting as a biophysical trigger for impaired contractility and the observed remodeling. Using time-resolved FRET and an all-atom TF model, here we first defined the WT structure of the cTnT-linker region and then identified Δ160E mutation-induced positional changes. Our results suggest that the WT linker runs alongside the C terminus of tropomyosin. The Δ160E-induced structural changes moved the linker closer to the tropomyosin C terminus, an effect that was more pronounced in the presence of myosin subfragment (S1) heads, supporting previous findings. Our model fully supported this result, indicating a mutation-induced decrease in linker flexibility. Our findings provide a framework for understanding basic pathogenic mechanisms that drive severe clinical hypertrophic cardiomyopathy phenotypes and for identifying structural targets for intervention that can be tested and .
心脏细丝(TF)中的突变对心脏肌节的调节功能有高度可变的影响。了解 TF 突变引起的分子水平功能障碍对于阐明心脏疾病机制至关重要。引起肥厚型心肌病的肌钙蛋白 T(cTnT)突变 Δ160Glu(Δ160E)位于一个假定的“铰链”附近,该铰链连接 TNT1 和 TNT2 结构域之间的无规连接体。目前,该区域没有高分辨率的结构,这极大地限制了我们理解其在肌丝激活中的作用和突变诱导功能障碍的分子机制的能力。以前的调节运动性数据表明突变诱导弱肌球蛋白相互作用的损害。我们假设 cTnT-Δ160E 重新定位了柔性连接体,改变了弱肌球蛋白静电结合,并作为收缩功能障碍和观察到的重构的物理触发因素。使用时间分辨的 FRET 和全原子 TF 模型,我们首先定义了 WT 结构的 cTnT-连接体区域,然后确定了 Δ160E 突变诱导的位置变化。我们的结果表明,WT 连接体沿着原肌球蛋白 C 末端运行。Δ160E 诱导的结构变化使连接体更靠近原肌球蛋白 C 末端,在肌球蛋白亚基(S1)头部存在时效果更为明显,支持了以前的发现。我们的模型完全支持了这一结果,表明突变诱导的连接体灵活性降低。我们的研究结果为理解驱动严重临床肥厚型心肌病表型的基本致病机制提供了框架,并为确定可测试和治疗的结构靶点提供了框架。