Suppr超能文献

基于荧光共振能量转移(FRET)的肌钙蛋白 T 连接区分析揭示了导致肥厚型心肌病的 Δ160E 突变的结构基础。

FRET-based analysis of the cardiac troponin T linker region reveals the structural basis of the hypertrophic cardiomyopathy-causing Δ160E mutation.

机构信息

Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, 85721.

Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, 85721.

出版信息

J Biol Chem. 2019 Oct 4;294(40):14634-14647. doi: 10.1074/jbc.RA118.005098. Epub 2019 Aug 6.

Abstract

Mutations in the cardiac thin filament (TF) have highly variable effects on the regulatory function of the cardiac sarcomere. Understanding the molecular-level dysfunction elicited by TF mutations is crucial to elucidate cardiac disease mechanisms. The hypertrophic cardiomyopathy-causing cardiac troponin T (cTnT) mutation Δ160Glu (Δ160E) is located in a putative "hinge" adjacent to an unstructured linker connecting domains TNT1 and TNT2. Currently, no high-resolution structure exists for this region, limiting significantly our ability to understand its role in myofilament activation and the molecular mechanism of mutation-induced dysfunction. Previous regulated motility data have indicated mutation-induced impairment of weak actomyosin interactions. We hypothesized that cTnT-Δ160E repositions the flexible linker, altering weak actomyosin electrostatic binding and acting as a biophysical trigger for impaired contractility and the observed remodeling. Using time-resolved FRET and an all-atom TF model, here we first defined the WT structure of the cTnT-linker region and then identified Δ160E mutation-induced positional changes. Our results suggest that the WT linker runs alongside the C terminus of tropomyosin. The Δ160E-induced structural changes moved the linker closer to the tropomyosin C terminus, an effect that was more pronounced in the presence of myosin subfragment (S1) heads, supporting previous findings. Our model fully supported this result, indicating a mutation-induced decrease in linker flexibility. Our findings provide a framework for understanding basic pathogenic mechanisms that drive severe clinical hypertrophic cardiomyopathy phenotypes and for identifying structural targets for intervention that can be tested and .

摘要

心脏细丝(TF)中的突变对心脏肌节的调节功能有高度可变的影响。了解 TF 突变引起的分子水平功能障碍对于阐明心脏疾病机制至关重要。引起肥厚型心肌病的肌钙蛋白 T(cTnT)突变 Δ160Glu(Δ160E)位于一个假定的“铰链”附近,该铰链连接 TNT1 和 TNT2 结构域之间的无规连接体。目前,该区域没有高分辨率的结构,这极大地限制了我们理解其在肌丝激活中的作用和突变诱导功能障碍的分子机制的能力。以前的调节运动性数据表明突变诱导弱肌球蛋白相互作用的损害。我们假设 cTnT-Δ160E 重新定位了柔性连接体,改变了弱肌球蛋白静电结合,并作为收缩功能障碍和观察到的重构的物理触发因素。使用时间分辨的 FRET 和全原子 TF 模型,我们首先定义了 WT 结构的 cTnT-连接体区域,然后确定了 Δ160E 突变诱导的位置变化。我们的结果表明,WT 连接体沿着原肌球蛋白 C 末端运行。Δ160E 诱导的结构变化使连接体更靠近原肌球蛋白 C 末端,在肌球蛋白亚基(S1)头部存在时效果更为明显,支持了以前的发现。我们的模型完全支持了这一结果,表明突变诱导的连接体灵活性降低。我们的研究结果为理解驱动严重临床肥厚型心肌病表型的基本致病机制提供了框架,并为确定可测试和治疗的结构靶点提供了框架。

相似文献

2
Allosteric effects of cardiac troponin TNT1 mutations on actomyosin binding: a novel pathogenic mechanism for hypertrophic cardiomyopathy.
Arch Biochem Biophys. 2014 Jun 15;552-553:21-8. doi: 10.1016/j.abb.2014.01.016. Epub 2014 Jan 28.
3
Molecular effects of familial hypertrophic cardiomyopathy-related mutations in the TNT1 domain of cTnT.
J Mol Biol. 2012 Aug 3;421(1):54-66. doi: 10.1016/j.jmb.2012.05.008. Epub 2012 May 10.
5
Clinically Divergent Mutation Effects on the Structure and Function of the Human Cardiac Tropomyosin Overlap.
Biochemistry. 2017 Jul 5;56(26):3403-3413. doi: 10.1021/acs.biochem.7b00266. Epub 2017 Jun 21.
6
Structure and Dynamics of the Flexible Cardiac Troponin T Linker Domain in a Fully Reconstituted Thin Filament.
Biochemistry. 2022 Jul 5;61(13):1229-1242. doi: 10.1021/acs.biochem.2c00091. Epub 2022 Jun 13.
8
Cardiac troponin T N-domain variant destabilizes the actin interface resulting in disturbed myofilament function.
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2221244120. doi: 10.1073/pnas.2221244120. Epub 2023 May 30.
10
Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations.
Circ Res. 2013 May 24;112(11):1491-505. doi: 10.1161/CIRCRESAHA.111.300436. Epub 2013 Mar 18.

引用本文的文献

1
Arg92Leu-cTnT Alters the cTnC-cTnI Interface Disrupting PKA-Mediated Relaxation.
Circ Res. 2024 Oct 25;135(10):974-989. doi: 10.1161/CIRCRESAHA.124.325223. Epub 2024 Sep 27.
2
Structural dynamics of the intrinsically disordered linker region of cardiac troponin T.
bioRxiv. 2024 Oct 14:2024.05.30.596451. doi: 10.1101/2024.05.30.596451.
3
Mechanisms of Sarcomere Protein Mutation-Induced Cardiomyopathies.
Curr Cardiol Rep. 2023 Jun;25(6):473-484. doi: 10.1007/s11886-023-01876-9. Epub 2023 Apr 15.
5
Structure and Dynamics of the Flexible Cardiac Troponin T Linker Domain in a Fully Reconstituted Thin Filament.
Biochemistry. 2022 Jul 5;61(13):1229-1242. doi: 10.1021/acs.biochem.2c00091. Epub 2022 Jun 13.
8
9
Cardiac troponin and tropomyosin bind to F-actin cooperatively, as revealed by fluorescence microscopy.
FEBS Open Bio. 2020 Jul;10(7):1362-1372. doi: 10.1002/2211-5463.12876. Epub 2020 Jun 18.
10
Docking Troponin T onto the Tropomyosin Overlapping Domain of Thin Filaments.
Biophys J. 2020 Jan 21;118(2):325-336. doi: 10.1016/j.bpj.2019.11.3393. Epub 2019 Dec 6.

本文引用的文献

1
Clinically Divergent Mutation Effects on the Structure and Function of the Human Cardiac Tropomyosin Overlap.
Biochemistry. 2017 Jul 5;56(26):3403-3413. doi: 10.1021/acs.biochem.7b00266. Epub 2017 Jun 21.
2
Modeling the Actin.myosin ATPase Cross-Bridge Cycle for Skeletal and Cardiac Muscle Myosin Isoforms.
Biophys J. 2017 Mar 14;112(5):984-996. doi: 10.1016/j.bpj.2017.01.021.
3
Atomic resolution probe for allostery in the regulatory thin filament.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3257-62. doi: 10.1073/pnas.1519541113. Epub 2016 Mar 8.
5
Molecular genetics and pathogenesis of cardiomyopathy.
J Hum Genet. 2016 Jan;61(1):41-50. doi: 10.1038/jhg.2015.83. Epub 2015 Jul 16.
7
Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin-filament gene mutations.
J Am Coll Cardiol. 2014 Dec 23;64(24):2589-2600. doi: 10.1016/j.jacc.2014.09.059.
8
The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14412-7. doi: 10.1073/pnas.1410775111. Epub 2014 Sep 22.
9
An atomic model of the tropomyosin cable on F-actin.
Biophys J. 2014 Aug 5;107(3):694-699. doi: 10.1016/j.bpj.2014.06.034.
10
Three-dimensional organization of troponin on cardiac muscle thin filaments in the relaxed state.
Biophys J. 2014 Feb 18;106(4):855-64. doi: 10.1016/j.bpj.2014.01.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验