Suppr超能文献

淀粉样蛋白PET在MCI患者个体化风险预测中的附加价值。

Added value of amyloid PET in individualized risk predictions for MCI patients.

作者信息

van Maurik Ingrid S, van der Kall Laura M, de Wilde Arno, Bouwman Femke H, Scheltens Philip, van Berckel Bart N M, Berkhof Johannes, van der Flier Wiesje M

机构信息

Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.

Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.

出版信息

Alzheimers Dement (Amst). 2019 Jul 29;11:529-537. doi: 10.1016/j.dadm.2019.04.011. eCollection 2019 Dec.

Abstract

INTRODUCTION

To construct a prognostic model based on amyloid positron emission tomography (PET) to predict clinical progression in individual patients with mild cognitive impairment (MCI).

METHODS

We included 411 MCI patients from the Alzheimer's Disease Neuroimaging Initiative. Prognostic models were constructed with Cox regression with demographics, magnetic resonance imaging, and/or amyloid PET to predict progression to Alzheimer's disease dementia. The models were validated in the Amsterdam Dementia Cohort.

RESULTS

The combined model (Harrell's C = 0.82 [0.78-0.86]) was significantly superior to demographics (β = 0.100,  < .001), magnetic resonance imaging (β = 0.037,  = .011), and PET only models (β = 0.053,  = .003).The models can be used to calculate individualized risk, for example, a female MCI patient (age = 60, APOE ε4 positive, Mini-Mental State Examination = 25, hippocampal volume = 5.8 cm, amyloid PET positive) has 35% (19-57) risk in one year and 85% (64-97) risk in three years. Model performances in the Amsterdam Dementia Cohort were reasonable.

DISCUSSION

The present study facilitates the interpretation of an amyloid PET result in the context of a patient's own characteristics and clinical assessment.

摘要

引言

构建基于淀粉样蛋白正电子发射断层扫描(PET)的预后模型,以预测轻度认知障碍(MCI)个体患者的临床进展。

方法

我们纳入了来自阿尔茨海默病神经影像倡议组织的411例MCI患者。使用Cox回归构建预后模型,纳入人口统计学、磁共振成像和/或淀粉样蛋白PET数据,以预测进展为阿尔茨海默病痴呆的情况。这些模型在阿姆斯特丹痴呆队列中进行了验证。

结果

联合模型(Harrell氏C指数=0.82[0.78 - 0.86])显著优于仅基于人口统计学的模型(β=0.100,P<0.001)、磁共振成像模型(β=0.037,P=0.011)和仅基于PET的模型(β=0.053,P=0.003)。这些模型可用于计算个体化风险,例如,一名女性MCI患者(年龄=60岁,APOE ε4阳性,简易精神状态检查表=25分,海马体积=5.8立方厘米,淀粉样蛋白PET阳性)在1年内有35%(19 - 57)的风险,在3年内有85%(64 - 97)的风险。在阿姆斯特丹痴呆队列中的模型表现合理。

讨论

本研究有助于结合患者自身特征和临床评估来解读淀粉样蛋白PET结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9821/6667768/217e5c13f814/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验