Suppr超能文献

具有量化不确定性的核磁共振光谱性质的快速预测。

Rapid prediction of NMR spectral properties with quantified uncertainty.

作者信息

Jonas Eric, Kuhn Stefan

机构信息

Department of Computer Science, University of Chicago, Chicago, USA.

School of Computer Science and Informatics, Leicester, UK.

出版信息

J Cheminform. 2019 Aug 6;11(1):50. doi: 10.1186/s13321-019-0374-3.

Abstract

Accurate calculation of specific spectral properties for NMR is an important step for molecular structure elucidation. Here we report the development of a novel machine learning technique for accurately predicting chemical shifts of both [Formula: see text]   and [Formula: see text] nuclei which exceeds DFT-accessible accuracy for [Formula: see text] and [Formula: see text] for a subset of nuclei, while being orders of magnitude more performant. Our method produces estimates of uncertainty, allowing for robust and confident predictions, and suggests future avenues for improved performance.

摘要

准确计算核磁共振(NMR)的特定光谱特性是阐明分子结构的重要一步。在此,我们报告了一种新型机器学习技术的开发,该技术可精确预测[化学式:见原文]和[化学式:见原文]原子核的化学位移,对于一部分原子核,其预测精度超过了密度泛函理论(DFT)可达的精度,且在[化学式:见原文]和[化学式:见原文]方面比DFT高出几个数量级。我们的方法能够生成不确定性估计值,从而实现稳健且可靠的预测,并为性能改进指明了未来的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53c8/6685179/eb653050cc4e/13321_2019_374_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验