Department of Psychology, York University, Toronto, ON, Canada.
Multivariate Behav Res. 2020 Mar-Apr;55(2):312-328. doi: 10.1080/00273171.2019.1633617. Epub 2019 Aug 7.
Measurement Invariance (MI) is often concluded from a nonsignificant chi-square difference test. Researchers have also proposed using change in goodness-of-fit indices ([Formula: see text]GOFs) instead. Both of these commonly used methods for testing MI have important limitations. To combat these issues, To combat these issues, it was proposed using an equivalence test (EQ) to replace the chi-square difference test commonly used to test MI. Due to concerns with the EQ's power, and adjusted version (EQ-A) was created, but provides little evaluation of either procedure. The current study evaluated the Type I error and power of both the EQ and EQ-A, and compared their performance to that of the traditional chi-square difference test and [Formula: see text]GOFs. The EQ was the only procedure that maintained empirical error rates below the nominal alpha level. Results also highlight that the EQ requires larger sample sizes than traditional difference-based approaches or using equivalence bounds based on larger than conventional RMSEA values (e.g., > .05) to ensure adequate power rates. We do not recommend the proposed adjustment (EQ-A) over the EQ.
测量不变性(MI)通常是从无显著差异的卡方检验中得出的。研究人员还提出了使用拟合优度指数的变化([Formula: see text]GOFs)来替代。这两种常用的 MI 检验方法都有重要的局限性。为了解决这些问题,提出使用等效检验(EQ)来替代常用的 MI 检验的卡方差异检验。由于对 EQ 的功效存在担忧,因此创建了一个调整版本(EQ-A),但对这两种方法都没有进行很好的评估。本研究评估了 EQ 和 EQ-A 的Ⅰ型错误和功效,并将其与传统的卡方差异检验和[Formula: see text]GOFs 的性能进行了比较。EQ 是唯一一种保持经验误差率低于名义 alpha 水平的方法。结果还强调,EQ 需要比传统的基于差异的方法或使用基于大于传统 RMSEA 值(例如,>.05)的等效边界的更大样本量,以确保足够的功效。我们不建议对 EQ 进行拟议的调整(EQ-A)。