Suppr超能文献

处理实验组间可能存在的基线不平等问题——以运动学习为例。

Dealing with Possible Baseline Inequalities Between Experimental Groups - The Case of Motor Learning.

机构信息

Motor Behavior Laboratory, The Academic College at Wingate, Netanya, Israel.

出版信息

J Mot Behav. 2020;52(4):502-513. doi: 10.1080/00222895.2019.1649996. Epub 2019 Aug 7.

Abstract

One important concept of experimental design is the random assignment of participants to experimental groups. This randomization process is used to prevent selection bias, as well as to provide a strong basis for a cause-and-effect relationship between the independent variable/s and the dependent variable/s. In small sample sizes, simple randomization may not provide equal groups at baseline for one or more of the variables, and therefore more restricted types of randomization, such as the stratified permuted-block randomization, can be used. A code was written to calculate the probability that simple randomization will not lead to equality between groups at baseline, and then an example of stratified permuted-block randomization was examined. The findings suggest that for certain variables that are commonly measured in experiments in motor learning, there is a relatively high probability that groups will not be equal at baseline after simple randomization. This observation reflects the small sample sizes usually found in the literature on motor learning. However, stratified permuted-block randomization does lead to greater equality among groups. Implications for researchers are discussed, and a flowchart is proposed that will allow researchers to decide whether to use simple or stratified randomization.

摘要

实验设计的一个重要概念是将参与者随机分配到实验组。这种随机化过程用于防止选择偏差,并为独立变量和因变量之间的因果关系提供坚实的基础。在样本量较小的情况下,简单随机化可能无法为一个或多个变量在基线时提供相等的组,因此可以使用更受限的随机化类型,例如分层随机区组随机化。编写了一个代码来计算简单随机化不会导致基线时组之间相等的概率,然后检查了分层随机区组随机化的一个示例。研究结果表明,对于运动学习实验中常见测量的某些变量,在简单随机化后,组之间没有相等的可能性相对较高。这种观察反映了运动学习文献中通常发现的小样本量。然而,分层随机区组随机化确实会导致组之间更加平等。讨论了对研究人员的影响,并提出了一个流程图,研究人员可以使用该流程图决定使用简单随机化还是分层随机化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验