Toorawa Robert, Adena Michael, Donovan Mark, Jones Steve, Conlon John
Covance, Statistical Sciences, Maidenhead, Berkshire, UK.
Pharm Stat. 2009 Oct-Dec;8(4):264-78. doi: 10.1002/pst.346.
Minimization is an alternative method to stratified permuted block randomization, which may be more effective at balancing treatments when there are many strata. However, its use in the regulatory setting for industry trials remains controversial, primarily due to the difficulty in interpreting conventional asymptotic statistical tests under restricted methods of treatment allocation. We argue that the use of minimization should be critically evaluated when designing the study for which it is proposed. We demonstrate by example how simulation can be used to investigate whether minimization improves treatment balance compared with stratified randomization, and how much randomness can be incorporated into the minimization before any balance advantage is no longer retained. We also illustrate by example how the performance of the traditional model-based analysis can be assessed, by comparing the nominal test size with the observed test size over a large number of simulations. We recommend that the assignment probability for the minimization be selected using such simulations.
最小化法是分层排列区组随机化的一种替代方法,当存在多个分层时,它在平衡治疗组方面可能更有效。然而,在行业试验的监管环境中使用它仍然存在争议,主要是因为在受限的治疗分配方法下难以解释传统的渐近统计检验。我们认为,在设计拟使用最小化法的研究时,应对其使用进行严格评估。我们通过示例展示了如何使用模拟来研究与分层随机化相比,最小化法是否能改善治疗组平衡,以及在不再保留任何平衡优势之前,可以将多少随机性纳入最小化法中。我们还通过示例说明了如何通过在大量模拟中比较名义检验规模与观察到的检验规模来评估传统基于模型的分析的性能。我们建议使用此类模拟来选择最小化法的分配概率。