Suppr超能文献

认知衰老与海马体中突触权重的再分配有关。

Cognitive aging is associated with redistribution of synaptic weights in the hippocampus.

机构信息

Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612.

Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.1921481118.

Abstract

Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others' lifespans outlast their "mindspans."

摘要

依赖海马体的行为特别容易受到时间的影响,许多老年动物(包括人类)保持着年轻成人水平的认知能力,但也有许多同龄动物表现出明显的认知障碍。目前尚不清楚随着时间的推移保持认知能力的能力是归因于大脑的维持、足够的认知储备、网络功能的代偿性变化,还是它们的某种组合。虽然在学习能力受损的老年动物的海马回路中存在网络功能障碍,但它的神经生物学基础仍然难以捉摸。在这里,我们表明,在记忆能力与年轻成年大鼠相当的老年大鼠的海马区域 CA1 和 CA3 的突触结构保持在年轻成年大鼠的状态。相比之下,在学习能力受损但年龄相同的大鼠中,我们发现突触权重的重新分布放大了 CA3 锥体神经元之间的自联想连接的影响,同时减少了来自齿状回的这些相同神经元的突触输入。值得注意的是,无论认知能力如何,海马体 CA1 中的突触都没有显示出群体差异。综合来看,我们发现海马体 CA3 中不平衡的突触权重提供了一个基础,可以解释老年、学习能力受损大鼠中海马体 CA3 和 CA1 锥体神经元异常放电的特征。此外,我们的工作为一些动物如何成功地认知老化,而另一些动物的寿命超过了它们的“心智寿命”提供了一些清晰度。

相似文献

1
Cognitive aging is associated with redistribution of synaptic weights in the hippocampus.
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.1921481118.
3
Progressive alterations of hippocampal CA3-CA1 synapses in an animal model of depression.
Behav Brain Res. 2014 Dec 15;275:191-200. doi: 10.1016/j.bbr.2014.08.040. Epub 2014 Sep 1.
5
Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells.
Neurobiol Aging. 2017 Jan;49:119-137. doi: 10.1016/j.neurobiolaging.2016.09.010. Epub 2016 Sep 28.
6
Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels.
J Neurosci. 2018 May 2;38(18):4430-4440. doi: 10.1523/JNEUROSCI.0022-18.2018. Epub 2018 Apr 13.
7
Hippocampal subregions exhibit both distinct and shared transcriptomic responses to aging and nonneurodegenerative cognitive decline.
J Gerontol A Biol Sci Med Sci. 2014 Nov;69(11):1311-24. doi: 10.1093/gerona/glu091. Epub 2014 Jul 2.
9
Hippocampal Mossy Fibers Synapses in CA3 Pyramidal Cells Are Altered at an Early Stage in a Mouse Model of Alzheimer's Disease.
J Neurosci. 2019 May 22;39(21):4193-4205. doi: 10.1523/JNEUROSCI.2868-18.2019. Epub 2019 Mar 18.
10
L-type Ca2+ currents at CA1 synapses, but not CA3 or dentate granule neuron synapses, are increased in 3xTgAD mice in an age-dependent manner.
Neurobiol Aging. 2014 Jan;35(1):88-95. doi: 10.1016/j.neurobiolaging.2013.07.007. Epub 2013 Aug 7.

引用本文的文献

4
Harnessing BDNF Signaling to Promote Resilience in Aging.
Aging Dis. 2024 Nov 27. doi: 10.14336/AD.2024.0961.
6
Cerebral hyperactivation across the Alzheimer's disease pathological cascade.
Brain Commun. 2024 Oct 25;6(6):fcae376. doi: 10.1093/braincomms/fcae376. eCollection 2024.
7
Entorhinal cortex-hippocampal circuit connectivity in health and disease.
Front Hum Neurosci. 2024 Sep 20;18:1448791. doi: 10.3389/fnhum.2024.1448791. eCollection 2024.
8
Regulation of synapse density by Pumilio RNA-binding proteins.
Cell Rep. 2024 Oct 22;43(10):114747. doi: 10.1016/j.celrep.2024.114747. Epub 2024 Sep 18.
9
Early hippocampal hyperexcitability and synaptic reorganization in mouse models of amyloidosis.
iScience. 2024 Aug 2;27(9):110629. doi: 10.1016/j.isci.2024.110629. eCollection 2024 Sep 20.
10
Alzheimer's-linked axonal changes accompany elevated antidromic action potential failure rate in aged mice.
Brain Res. 2024 Oct 15;1841:149083. doi: 10.1016/j.brainres.2024.149083. Epub 2024 Jun 10.

本文引用的文献

2
Functional Connectivity of Hippocampal CA3 Predicts Neurocognitive Aging via CA1-Frontal Circuit.
Cereb Cortex. 2020 Jun 30;30(8):4297-4305. doi: 10.1093/cercor/bhaa008.
4
Alzheimer's-like pathology in aging rhesus macaques: Unique opportunity to study the etiology and treatment of Alzheimer's disease.
Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26230-26238. doi: 10.1073/pnas.1903671116. Epub 2019 Dec 23.
5
Regulation of intrinsic excitability: Roles for learning and memory, aging and Alzheimer's disease, and genetic diversity.
Neurobiol Learn Mem. 2019 Oct;164:107069. doi: 10.1016/j.nlm.2019.107069. Epub 2019 Aug 20.
6
Senescent neurophysiology: Ca signaling from the membrane to the nucleus.
Neurobiol Learn Mem. 2019 Oct;164:107064. doi: 10.1016/j.nlm.2019.107064. Epub 2019 Aug 5.
8
Linking Nanoscale Dynamics of AMPA Receptor Organization to Plasticity of Excitatory Synapses and Learning.
J Neurosci. 2018 Oct 31;38(44):9318-9329. doi: 10.1523/JNEUROSCI.2119-18.2018.
9
Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing.
Nat Rev Neurosci. 2018 Nov;19(11):701-710. doi: 10.1038/s41583-018-0068-2.
10
Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance.
Alzheimers Dement. 2020 Sep;16(9):1305-1311. doi: 10.1016/j.jalz.2018.07.219. Epub 2020 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验