Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612.
Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.1921481118.
Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others' lifespans outlast their "mindspans."
依赖海马体的行为特别容易受到时间的影响,许多老年动物(包括人类)保持着年轻成人水平的认知能力,但也有许多同龄动物表现出明显的认知障碍。目前尚不清楚随着时间的推移保持认知能力的能力是归因于大脑的维持、足够的认知储备、网络功能的代偿性变化,还是它们的某种组合。虽然在学习能力受损的老年动物的海马回路中存在网络功能障碍,但它的神经生物学基础仍然难以捉摸。在这里,我们表明,在记忆能力与年轻成年大鼠相当的老年大鼠的海马区域 CA1 和 CA3 的突触结构保持在年轻成年大鼠的状态。相比之下,在学习能力受损但年龄相同的大鼠中,我们发现突触权重的重新分布放大了 CA3 锥体神经元之间的自联想连接的影响,同时减少了来自齿状回的这些相同神经元的突触输入。值得注意的是,无论认知能力如何,海马体 CA1 中的突触都没有显示出群体差异。综合来看,我们发现海马体 CA3 中不平衡的突触权重提供了一个基础,可以解释老年、学习能力受损大鼠中海马体 CA3 和 CA1 锥体神经元异常放电的特征。此外,我们的工作为一些动物如何成功地认知老化,而另一些动物的寿命超过了它们的“心智寿命”提供了一些清晰度。