Yu Shujian, Giraldo Luis Gonzalo Sanchez, Jenssen Robert, Principe Jose C
IEEE Trans Pattern Anal Mach Intell. 2020 Nov;42(11):2960-2966. doi: 10.1109/TPAMI.2019.2932976. Epub 2019 Aug 5.
The matrix-based Rényi's α-order entropy functional was recently introduced using the normalized eigenspectrum of a Hermitian matrix of the projected data in a reproducing kernel Hilbert space (RKHS). However, the current theory in the matrix-based Rényi's α-order entropy functional only defines the entropy of a single variable or mutual information between two random variables. In information theory and machine learning communities, one is also frequently interested in multivariate information quantities, such as the multivariate joint entropy and different interactive quantities among multiple variables. In this paper, we first define the matrix-based Rényi's α-order joint entropy among multiple variables. We then show how this definition can ease the estimation of various information quantities that measure the interactions among multiple variables, such as interactive information and total correlation. We finally present an application to feature selection to show how our definition provides a simple yet powerful way to estimate a widely-acknowledged intractable quantity from data. A real example on hyperspectral image (HSI) band selection is also provided.
基于矩阵的雷尼α阶熵泛函最近是利用再生核希尔伯特空间(RKHS)中投影数据的埃尔米特矩阵的归一化特征谱引入的。然而,基于矩阵的雷尼α阶熵泛函的当前理论仅定义了单个变量的熵或两个随机变量之间的互信息。在信息论和机器学习领域,人们还经常关注多变量信息量,例如多变量联合熵以及多个变量之间的不同交互量。在本文中,我们首先定义多个变量之间基于矩阵的雷尼α阶联合熵。然后我们展示了这个定义如何简化对各种衡量多个变量之间交互作用的信息量的估计,比如交互信息和总相关性。我们最后给出一个特征选择的应用,以展示我们的定义如何提供一种简单而强大的方法来从数据中估计一个广为人知的难以处理的量。还提供了一个关于高光谱图像(HSI)波段选择的实际例子。