Suppr超能文献

复杂系统中的超越成对连接:对人类多尺度精神病大脑的洞察

Beyond Pairwise Connections in Complex Systems: Insights into the Human Multiscale Psychotic Brain.

作者信息

Li Qiang, Yu Shujian, Malo Jesus, Pearlson Godfrey D, Wang Yu-Ping, Calhoun Vince D

机构信息

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA,United States.

Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands.

出版信息

bioRxiv. 2025 Mar 18:2025.03.18.643985. doi: 10.1101/2025.03.18.643985.

Abstract

Complex biological systems, like the brain, exhibit intricate multiway and multiscale interactions that drive emergent behaviors. In psychiatry, neural processes extend beyond pairwise connectivity, involving higher-order interactions critical for understanding mental disorders. Conventional brain network studies focus on pairwise links, offering insights into basic connectivity but failing to capture the complexity of neural dysfunction in psychiatric conditions. This study aims to bridge this gap by applying a matrix-based entropy functional to estimate total correlation, a mathematical framework that incorporates multivariate information measures extending beyond pairwise interactions. We apply this framework to fMRI-ICA-derived multiscale brain networks, enabling the investigation of interactions beyond pairwise relationships in the human multiscale brain. Additionally, this approach holds promise for psychiatric studies, providing a new lens through which to explore beyond pairwise brain network interactions. By examining both triple interactions and the latent factors underlying the triadic relationships among intrinsic brain connectivity networks through tensor decomposition, our study presents a novel approach to understanding higher-order brain dynamics. This framework not only enhances our understanding of complex brain functions but also offers new opportunities for investigating pathophysiology, potentially informing more targeted diagnostic and therapeutic strategies. Moreover, the methodology of analyzing multiway interactions beyond pairwise connections can be applied to any signal analysis. In this study, we specifically explore its application to neural signals, demonstrating its power in uncovering complex multiway interaction patterns of brain activity, which provide a window to explore connectivity beyond pairwise interactions in the multiscale functionality of the brain.

摘要

复杂的生物系统,如大脑,呈现出复杂的多向和多尺度相互作用,这些相互作用驱动着涌现行为。在精神病学中,神经过程超越了成对连接,涉及对理解精神障碍至关重要的高阶相互作用。传统的脑网络研究专注于成对连接,能提供对基本连接性的见解,但无法捕捉精神疾病中神经功能障碍的复杂性。本研究旨在通过应用基于矩阵的熵函数来估计总相关性来弥合这一差距,这是一个数学框架,它纳入了超越成对相互作用的多变量信息度量。我们将这个框架应用于功能磁共振成像独立成分分析(fMRI-ICA)衍生的多尺度脑网络,从而能够研究人类多尺度大脑中超越成对关系的相互作用。此外,这种方法对精神病学研究具有前景,提供了一个新的视角来探索超越成对脑网络相互作用的内容。通过张量分解研究内在脑连接网络之间三元关系的三重相互作用和潜在因素,我们的研究提出了一种理解高阶脑动力学的新方法。这个框架不仅增强了我们对复杂脑功能的理解,还为研究病理生理学提供了新机会,可能为更有针对性的诊断和治疗策略提供信息。此外,分析超越成对连接的多向相互作用的方法可以应用于任何信号分析。在本研究中,我们特别探索了其在神经信号中的应用,展示了其在揭示脑活动复杂多向相互作用模式方面的能力,这些模式为探索大脑多尺度功能中超越成对相互作用的连接性提供了一个窗口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6538/11956946/f7c6fd507c26/nihpp-2025.03.18.643985v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验