Li Qiang, Steeg Greg Ver, Yu Shujian, Malo Jesus
Image Processing Laboratory, University of Valencia, 46980 Valencia, Spain.
Information Sciences Institute, University of Southern California, Marina del Rey, CA 90292, USA.
Entropy (Basel). 2022 Nov 25;24(12):1725. doi: 10.3390/e24121725.
Recent studies proposed the use of Total Correlation to describe functional connectivity among brain regions as a multivariate alternative to conventional pairwise measures such as correlation or mutual information. In this work, we build on this idea to infer a large-scale (whole-brain) connectivity network based on Total Correlation and show the possibility of using this kind of network as biomarkers of brain alterations. In particular, this work uses Correlation Explanation (CorEx) to estimate Total Correlation. First, we prove that CorEx estimates of Total Correlation and clustering results are trustable compared to ground truth values. Second, the inferred large-scale connectivity network extracted from the more extensive open fMRI datasets is consistent with existing neuroscience studies, but, interestingly, can estimate additional relations beyond pairwise regions. And finally, we show how the connectivity graphs based on Total Correlation can also be an effective tool to aid in the discovery of brain diseases.
最近的研究提出使用全相关性来描述脑区之间的功能连接,作为传统成对测量方法(如相关性或互信息)的多元替代方法。在这项工作中,我们基于这一想法构建了一个基于全相关性的大规模(全脑)连接网络,并展示了使用这种网络作为脑改变生物标志物的可能性。特别是,这项工作使用相关性解释(CorEx)来估计全相关性。首先,我们证明与真实值相比,全相关性的CorEx估计值和聚类结果是可靠的。其次,从更广泛的公开功能磁共振成像数据集提取的推断大规模连接网络与现有的神经科学研究一致,但有趣的是,它可以估计成对区域之外的额外关系。最后,我们展示了基于全相关性的连接图如何也能成为辅助发现脑部疾病的有效工具。