Suppr超能文献

基于扩散关联黏菌算法和 Renyi 熵的多水平阈值图像分割在慢性阻塞性肺疾病中的应用

Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi's entropy for chronic obstructive pulmonary disease.

机构信息

College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.

College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China.

出版信息

Comput Biol Med. 2021 Jul;134:104427. doi: 10.1016/j.compbiomed.2021.104427. Epub 2021 May 6.

Abstract

Image segmentation is an essential pre-processing step and is an indispensable part of image analysis. This paper proposes Renyi's entropy multi-threshold image segmentation based on an improved Slime Mould Algorithm (DASMA). First, we introduce the diffusion mechanism (DM) into the original SMA to increase the population's diversity so that the variants can better avoid falling into local optima. The association strategy (AS) is then added to help the algorithm find the optimal solution faster. Finally, the proposed algorithm is applied to Renyi's entropy multilevel threshold image segmentation based on non-local means 2D histogram. The proposed method's effectiveness is demonstrated on the Berkeley segmentation dataset and benchmark (BSD) by comparing it with some well-known algorithms. The DASMA-based multilevel threshold segmentation technique is also successfully applied to the CT image segmentation of chronic obstructive pulmonary disease (COPD). The experimental results are evaluated by image quality metrics, which show the proposed algorithm's extraordinary performance. This means that it can help doctors analyze the lesion tissue qualitatively and quantitatively, improve its diagnostic accuracy and make the right treatment plan. The supplementary material and info about this article will be available at https://aliasgharheidari.com.

摘要

图像分割是一种基本的预处理步骤,也是图像分析不可缺少的一部分。本文提出了一种基于改进的粘菌算法(DASMA)的 Renyi 熵多阈值图像分割方法。首先,我们将扩散机制(DM)引入到原始 SMA 中,以增加种群的多样性,使变体能够更好地避免陷入局部最优。然后添加关联策略(AS),以帮助算法更快地找到最优解。最后,将所提出的算法应用于基于非局部均值 2D 直方图的 Renyi 熵多级阈值图像分割。通过与一些知名算法进行比较,在伯克利分割数据集和基准(BSD)上验证了所提出方法的有效性。基于 DASMA 的多级阈值分割技术也成功应用于慢性阻塞性肺疾病(COPD)的 CT 图像分割。通过图像质量指标对实验结果进行评估,结果表明所提出的算法具有优异的性能。这意味着它可以帮助医生定性和定量地分析病变组织,提高诊断的准确性并制定正确的治疗计划。本文的补充材料和信息将在 https://aliasgharheidari.com 上提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验