Suppr超能文献

用弹簧连接腿部可提高人类的跑步经济性。

Connecting the legs with a spring improves human running economy.

机构信息

Stanford University, Department of Mechanical Engineering, Stanford, CA 94305, USA.

Stanford University, Department of Bioengineering, Stanford, CA 94305, USA.

出版信息

J Exp Biol. 2019 Sep 3;222(Pt 17):jeb202895. doi: 10.1242/jeb.202895.

Abstract

Human running is inefficient. For every 10 calories burned, less than 1 is needed to maintain a constant forward velocity - the remaining energy is, in a sense, wasted. The majority of this wasted energy is expended to support the bodyweight and redirect the center of mass during the stance phase of gait. An order of magnitude less energy is expended to brake and accelerate the swinging leg. Accordingly, most devices designed to increase running efficiency have targeted the costlier stance phase of gait. An alternative approach is seen in nature: spring-like tissues in some animals and humans are believed to assist leg swing. While it has been assumed that such a spring simply offloads the muscles that swing the legs, thus saving energy, this mechanism has not been experimentally investigated. Here, we show that a spring, or 'exotendon', connecting the legs of a human reduces the energy required for running by 6.4±2.8%, and does so through a complex mechanism that produces savings beyond those associated with leg swing. The exotendon applies assistive forces to the swinging legs, increasing the energy optimal stride frequency. Runners then adopt this frequency, taking faster and shorter strides, and reduce the joint mechanical work to redirect their center of mass. Our study shows how a simple spring improves running economy through a complex interaction between the changing dynamics of the body and the adaptive strategies of the runner, highlighting the importance of considering each when designing systems that couple human and machine.

摘要

人类跑步效率低下。每消耗 10 卡路里,只有不到 1 卡路里用于维持恒定的前进速度——其余的能量在某种意义上被浪费了。大部分浪费的能量用于支撑体重,并在步态的支撑阶段重新引导质心。只有更小的一部分能量用于制动和加速摆动腿。因此,大多数旨在提高跑步效率的设备都针对步态更昂贵的支撑阶段。一种替代方法可以在自然界中看到:一些动物和人类的弹簧状组织被认为有助于腿部摆动。虽然人们认为这样的弹簧只是减轻了摆动腿部的肌肉的负担,从而节省了能量,但这种机制尚未经过实验研究。在这里,我们表明连接人体腿部的弹簧或“外肌腱”可以将跑步所需的能量降低 6.4±2.8%,并且通过一种复杂的机制来实现节省,这种机制产生的节省超出了与腿部摆动相关的节省。外肌腱对摆动的腿部施加辅助力,增加了能量最优的步频。跑步者然后采用这种频率,迈出更快、更短的步伐,并减少重新引导质心的关节机械功。我们的研究表明,一个简单的弹簧如何通过身体动态的复杂相互作用以及跑步者的自适应策略来提高跑步经济性,这突出了在设计将人和机器结合起来的系统时,考虑到这两者的重要性。

相似文献

1
Connecting the legs with a spring improves human running economy.
J Exp Biol. 2019 Sep 3;222(Pt 17):jeb202895. doi: 10.1242/jeb.202895.
3
How Connecting the Legs with a Spring Improves Human Running Economy.
bioRxiv. 2023 Apr 6:2023.04.03.535498. doi: 10.1101/2023.04.03.535498.
4
Swing-leg retraction: a simple control model for stable running.
J Exp Biol. 2003 Aug;206(Pt 15):2547-55. doi: 10.1242/jeb.00463.
5
Changing Stride Frequency Alters Average Joint Power and Power Distributions during Ground Contact and Leg Swing in Running.
Med Sci Sports Exerc. 2021 Oct 1;53(10):2111-2118. doi: 10.1249/MSS.0000000000002692.
7
Simulating Muscle-Level Energetic Cost Savings When Humans Run with a Passive Assistive Device.
IEEE Robot Autom Lett. 2023 Oct;8(10):6267-6274. doi: 10.1109/lra.2023.3303094. Epub 2023 Aug 7.
8
Older Runners Retain Youthful Running Economy despite Biomechanical Differences.
Med Sci Sports Exerc. 2016 Apr;48(4):697-704. doi: 10.1249/MSS.0000000000000820.
9
Compliant leg behaviour explains basic dynamics of walking and running.
Proc Biol Sci. 2006 Nov 22;273(1603):2861-7. doi: 10.1098/rspb.2006.3637.
10
Leg stiffness and stride frequency in human running.
J Biomech. 1996 Feb;29(2):181-6. doi: 10.1016/0021-9290(95)00029-1.

引用本文的文献

1
Design of an ankle exoskeleton with twisted string actuation for running assistance.
Wearable Technol. 2025 Jul 22;6:e34. doi: 10.1017/wtc.2025.10010. eCollection 2025.
3
Behavioural energetics in human locomotion: how energy use influences how we move.
J Exp Biol. 2025 Feb 15;228(Suppl_1). doi: 10.1242/jeb.248125. Epub 2025 Feb 20.
4
Biomechanical models in the lower-limb exoskeletons development: a review.
J Neuroeng Rehabil. 2025 Jan 24;22(1):12. doi: 10.1186/s12984-025-01556-5.
5
Establishing thresholds for swing transparency at the knee during gait to inform exoskeleton design.
PLoS One. 2025 Jan 17;20(1):e0317259. doi: 10.1371/journal.pone.0317259. eCollection 2025.
6
Implementation of a passive bi-articular ankle-knee exoskeleton during maximal squat jumping.
R Soc Open Sci. 2024 Jul 31;11(7):240390. doi: 10.1098/rsos.240390. eCollection 2024 Jul.
7
The spring stiffness profile within a passive, full-leg exoskeleton affects lower-limb joint mechanics while hopping.
R Soc Open Sci. 2024 Mar 20;11(3):231449. doi: 10.1098/rsos.231449. eCollection 2024 Mar.
8
Simulating Muscle-Level Energetic Cost Savings When Humans Run with a Passive Assistive Device.
IEEE Robot Autom Lett. 2023 Oct;8(10):6267-6274. doi: 10.1109/lra.2023.3303094. Epub 2023 Aug 7.
9
A negative-work knee energy harvester based on homo-phase transfer for wearable monitoring devices.
iScience. 2023 Jun 5;26(7):107011. doi: 10.1016/j.isci.2023.107011. eCollection 2023 Jul 21.
10
Data-Driven Variable Impedance Control of a Powered Knee-Ankle Prosthesis for Adaptive Speed and Incline Walking.
IEEE Trans Robot. 2023 Jun;39(3):2151-2169. doi: 10.1109/tro.2022.3226887. Epub 2023 Jan 13.

本文引用的文献

1
Reducing the metabolic cost of running with a tethered soft exosuit.
Sci Robot. 2017 May 31;2(6). doi: 10.1126/scirobotics.aan6708.
2
Extrapolating Metabolic Savings in Running: Implications for Performance Predictions.
Front Physiol. 2019 Feb 11;10:79. doi: 10.3389/fphys.2019.00079. eCollection 2019.
4
Reducing the Energy Cost of Human Running Using an Unpowered Exoskeleton.
IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):2026-2032. doi: 10.1109/TNSRE.2018.2872889. Epub 2018 Sep 28.
5
Human-in-the-loop optimization of exoskeleton assistance during walking.
Science. 2017 Jun 23;356(6344):1280-1284. doi: 10.1126/science.aal5054.
6
The Advantages of Normalizing Electromyography to Ballistic Rather than Isometric or Isokinetic Tasks.
J Appl Biomech. 2017 Jul;33(3):189-196. doi: 10.1123/jab.2016-0146. Epub 2017 Jun 26.
7
The physiological basis of bird flight.
Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704). doi: 10.1098/rstb.2015.0384.
8
Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
IEEE Trans Biomed Eng. 2016 Oct;63(10):2068-79. doi: 10.1109/TBME.2016.2586891. Epub 2016 Jul 7.
9
Altered Running Economy Directly Translates to Altered Distance-Running Performance.
Med Sci Sports Exerc. 2016 Nov;48(11):2175-2180. doi: 10.1249/MSS.0000000000001012.
10
Feasible muscle activation ranges based on inverse dynamics analyses of human walking.
J Biomech. 2015 Sep 18;48(12):2990-7. doi: 10.1016/j.jbiomech.2015.07.037. Epub 2015 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验