Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
Mol Cancer Ther. 2019 Nov;18(11):2097-2110. doi: 10.1158/1535-7163.MCT-18-1011. Epub 2019 Aug 8.
Pancreatic cancer remains an incurable condition. Its progression is driven, in part, by subsets of cancer cells that evade the cytotoxic effects of conventional chemotherapies. These cells are often low-cycling, multidrug resistant, and adopt a stem cell-like phenotype consistent with the concept of cancer stem cells (CSC). To identify drugs impacting on tumor-promoting CSCs, we performed a differential high-throughput drug screen in pancreatic cancer cells cultured in traditional (2D) monolayers versus three-dimensional (3D) spheroids which replicate key elements of the CSC model. Among the agents capable of killing cells cultured in both formats was a 1H-benzo[d]imidazol-2-amine-based inhibitor of IL2-inducible T-cell kinase (ITK; NCGC00188382, inhibitor #1) that effectively mediated growth inhibition and induction of apoptosis , and suppressed cancer progression and metastasis formation An examination of this agent's polypharmacology via and phosphoproteomic profiling demonstrated an activity profile enriched for mediators involved in DNA damage repair. Included was a strong inhibitory potential versus the thousand-and-one amino acid kinase 3 (TAOK3), CDK7, and aurora B kinases. We found that cells grown under CSC-enriching spheroid conditions are selectively dependent on TAOK3 signaling. Loss of TAOK3 decreases colony formation, expression of stem cell markers, and sensitizes spheroids to the genotoxic effect of gemcitabine, whereas overexpression of TAOK3 increases stem cell traits including tumor initiation and metastasis formation. By inactivating multiple components of the cell-cycle machinery in concert with the downregulation of key CSC signatures, inhibitor #1 defines a distinctive strategy for targeting pancreatic cancer cell populations.
胰腺癌仍然是一种无法治愈的疾病。其进展部分是由逃避常规化疗细胞毒性作用的癌细胞亚群驱动的。这些细胞通常是低循环、多药耐药的,并采用与癌症干细胞 (CSC) 概念一致的干细胞样表型。为了确定影响肿瘤促进 CSC 的药物,我们在传统(2D)单层培养的胰腺癌细胞与复制 CSC 模型关键要素的三维(3D)球体中进行了差异高通量药物筛选。在能够杀死两种培养形式细胞的药物中,有一种基于 1H-苯并[d]咪唑-2-胺的白细胞介素 2 诱导 T 细胞激酶 (ITK) 抑制剂(NCGC00188382,抑制剂#1),可有效介导细胞生长抑制和凋亡诱导,并抑制癌症进展和转移形成。通过和磷酸化蛋白质组学分析,对该药物的多药理学进行检查,发现其活性谱丰富,涉及参与 DNA 损伤修复的介质。其中包括对千个氨基酸激酶 3 (TAOK3)、CDK7 和极光 B 激酶的强烈抑制潜力。我们发现,在富含 CSC 的球体条件下生长的细胞对 TAOK3 信号的选择性依赖。TAOK3 的缺失降低了集落形成、干细胞标志物的表达,并使球体对吉西他滨的遗传毒性作用敏感,而 TAOK3 的过表达增加了包括肿瘤起始和转移形成在内的干细胞特性。通过协同下调关键 CSC 特征,抑制剂#1 使细胞周期机制的多个成分失活,定义了一种针对胰腺癌细胞群的独特靶向策略。