Suppr超能文献

能量稳态原理:神经元能量调节驱动产生行为的局部网络动力学。

The Energy Homeostasis Principle: Neuronal Energy Regulation Drives Local Network Dynamics Generating Behavior.

作者信息

Vergara Rodrigo C, Jaramillo-Riveri Sebastián, Luarte Alejandro, Moënne-Loccoz Cristóbal, Fuentes Rómulo, Couve Andrés, Maldonado Pedro E

机构信息

Neurosystems Laboratory, Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.

School of Biological Sciences, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

Front Comput Neurosci. 2019 Jul 23;13:49. doi: 10.3389/fncom.2019.00049. eCollection 2019.

Abstract

A major goal of neuroscience is understanding how neurons arrange themselves into neural networks that result in behavior. Most theoretical and experimental efforts have focused on a top-down approach which seeks to identify neuronal correlates of behaviors. This has been accomplished by effectively mapping specific behaviors to distinct neural patterns, or by creating computational models that produce a desired behavioral outcome. Nonetheless, these approaches have only implicitly considered the fact that neural tissue, like any other physical system, is subjected to several restrictions and boundaries of operations. Here, we proposed a new, bottom-up conceptual paradigm: The Energy Homeostasis Principle, where the balance between energy income, expenditure, and availability are the key parameters in determining the dynamics of neuronal phenomena found from molecular to behavioral levels. Neurons display high energy consumption relative to other cells, with metabolic consumption of the brain representing 20% of the whole-body oxygen uptake, contrasting with this organ representing only 2% of the body weight. Also, neurons have specialized surrounding tissue providing the necessary energy which, in the case of the brain, is provided by astrocytes. Moreover, and unlike other cell types with high energy demands such as muscle cells, neurons have strict aerobic metabolism. These facts indicate that neurons are highly sensitive to energy limitations, with Gibb's free energy dictating the direction of all cellular metabolic processes. From this activity, the largest energy, by far, is expended by action potentials and post-synaptic potentials; therefore, plasticity can be reinterpreted in terms of their energy context. Consequently, neurons, through their synapses, impose energy demands over post-synaptic neurons in a close loop-manner, modulating the dynamics of local circuits. Subsequently, the energy dynamics end up impacting the homeostatic mechanisms of neuronal networks. Furthermore, local energy management also emerges as a neural population property, where most of the energy expenses are triggered by sensory or other modulatory inputs. Local energy management in neurons may be sufficient to explain the emergence of behavior, enabling the assessment of which properties arise in neural circuits and how. Essentially, the proposal of the Energy Homeostasis Principle is also readily testable for simple neuronal networks.

摘要

神经科学的一个主要目标是了解神经元如何排列成神经网络从而产生行为。大多数理论和实验工作都集中在自上而下的方法上,该方法试图识别行为的神经元相关因素。这是通过有效地将特定行为映射到不同的神经模式,或者通过创建产生所需行为结果的计算模型来实现的。然而,这些方法只是隐含地考虑了这样一个事实,即神经组织与任何其他物理系统一样,受到多种操作限制和边界的约束。在这里,我们提出了一种新的自下而上的概念范式:能量稳态原理,其中能量收入、支出和可用性之间的平衡是决定从分子水平到行为水平所发现的神经元现象动态的关键参数。相对于其他细胞,神经元表现出高能量消耗,大脑的代谢消耗占全身氧气摄取量的20%,而这个器官仅占体重的2%。此外,神经元有专门的周围组织提供必要的能量,就大脑而言,这种能量由星形胶质细胞提供。而且,与其他高能量需求的细胞类型(如肌肉细胞)不同,神经元具有严格的有氧代谢。这些事实表明,神经元对能量限制高度敏感,吉布斯自由能决定了所有细胞代谢过程的方向。从这种活动来看,到目前为止,最大的能量消耗来自动作电位和突触后电位;因此,可塑性可以根据其能量背景重新解释。因此,神经元通过其突触以闭环方式对突触后神经元施加能量需求,调节局部回路的动态。随后,能量动态最终影响神经网络的稳态机制。此外,局部能量管理也作为一种神经群体特性出现,其中大部分能量消耗是由感觉或其他调节输入触发的。神经元中的局部能量管理可能足以解释行为的出现,从而能够评估神经回路中出现了哪些特性以及如何出现的。本质上,能量稳态原理的提议对于简单的神经元网络也很容易进行测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e468/6664078/b684c0d2360c/fncom-13-00049-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验