Behrisch Michael, Schreck Tobias, Krüger Robert, Gehlenborg Nils, Lekschas Fritz, Pfister Hanspeter
Harvard University, Cambridge, USA.
Graz University of Technology, Graz, Austria.
2018 Int Symp Big Data Vis Immers Analyt (BDVA) (2018). 2018 Oct;2018. doi: 10.1109/BDVA.2018.8534028. Epub 2018 Nov 15.
Pattern extraction algorithms are enabling insights into the ever-growing amount of today's datasets by translating reoccurring data properties into compact representations. Yet, a practical problem arises: With increasing data volumes and complexity also the number of patterns increases, leaving the analyst with a vast result space. Current algorithmic and especially visualization approaches often fail to answer central overview questions essential for a comprehensive understanding of pattern distributions and support, their quality, and relevance to the analysis task. To address these challenges, we contribute a visual analytics pipeline targeted on the pattern-driven exploration of result spaces in a semi-automatic fashion. Specifically, we combine image feature analysis and unsupervised learning to partition the pattern space into interpretable, coherent chunks, which should be given priority in a subsequent in-depth analysis. In our analysis scenarios, no ground-truth is given. Thus, we employ and evaluate novel quality metrics derived from the distance distributions of our image feature vectors and the derived cluster model to guide the feature selection process. We visualize our results interactively, allowing the user to drill down from overview to detail into the pattern space and demonstrate our techniques in two case studies on Earth observation and biomedical genomic data.
模式提取算法通过将反复出现的数据属性转换为紧凑表示,从而能够洞察当今不断增长的数据集。然而,一个实际问题出现了:随着数据量和复杂性的增加,模式的数量也在增加,这给分析师留下了一个庞大的结果空间。当前的算法,尤其是可视化方法,往往无法回答对于全面理解模式分布及其支持、质量以及与分析任务的相关性至关重要的核心概述问题。为应对这些挑战,我们贡献了一个可视化分析管道,旨在以半自动方式对结果空间进行模式驱动的探索。具体而言,我们将图像特征分析和无监督学习相结合,将模式空间划分为可解释的、连贯的块,这些块应在后续的深入分析中优先考虑。在我们的分析场景中,没有给出真实情况。因此,我们采用并评估了从图像特征向量的距离分布和派生的聚类模型中得出的新质量指标,以指导特征选择过程。我们以交互方式可视化我们的结果,允许用户从概述深入到细节进入模式空间,并在地球观测和生物医学基因组数据的两个案例研究中展示我们的技术。