Suppr超能文献

Peax:使用无监督深度表示学习在序列数据中进行交互式视觉模式搜索。

Peax: Interactive Visual Pattern Search in Sequential Data Using Unsupervised Deep Representation Learning.

作者信息

Lekschas Fritz, Peterson Brant, Haehn Daniel, Ma Eric, Gehlenborg Nils, Pfister Hanspeter

机构信息

Harvard School of Engineering and Applied Sciences.

Novartis Institutes for BioMedical Research.

出版信息

Comput Graph Forum. 2020 Jun;39(3):167-179. doi: 10.1111/cgf.13971. Epub 2020 Jul 18.

Abstract

We present Peax, a novel feature-based technique for interactive visual pattern search in sequential data, like time series or data mapped to a genome sequence. Visually searching for patterns by similarity is often challenging because of the large search space, the visual complexity of patterns, and the user's perception of similarity. For example, in genomics, researchers try to link patterns in multivariate sequential data to cellular or pathogenic processes, but a lack of ground truth and high variance makes automatic pattern detection unreliable. We have developed a convolutional autoencoder for unsupervised representation learning of regions in sequential data that can capture more visual details of complex patterns compared to existing similarity measures. Using this learned representation as features of the sequential data, our accompanying visual query system enables interactive feedback-driven adjustments of the pattern search to adapt to the users' perceived similarity. Using an active learning sampling strategy, Peax collects user-generated binary relevance feedback. This feedback is used to train a model for binary classification, to ultimately find other regions that exhibit patterns similar to the search target. We demonstrate Peax's features through a case study in genomics and report on a user study with eight domain experts to assess the usability and usefulness of Peax. Moreover, we evaluate the effectiveness of the learned feature representation for visual similarity search in two additional user studies. We find that our models retrieve significantly more similar patterns than other commonly used techniques.

摘要

我们介绍了Peax,一种用于在时间序列或映射到基因组序列的数据等序列数据中进行交互式视觉模式搜索的基于新颖特征的技术。由于搜索空间大、模式的视觉复杂性以及用户对相似性的感知,通过相似性进行视觉模式搜索通常具有挑战性。例如,在基因组学中,研究人员试图将多变量序列数据中的模式与细胞或致病过程联系起来,但缺乏基本事实和高变异性使得自动模式检测不可靠。我们开发了一种卷积自动编码器,用于对序列数据中的区域进行无监督表示学习,与现有的相似性度量相比,它可以捕获复杂模式的更多视觉细节。将这种学习到的表示作为序列数据的特征,我们配套的视觉查询系统能够进行交互式反馈驱动的模式搜索调整,以适应用户感知到的相似性。使用主动学习采样策略,Peax收集用户生成的二元相关性反馈。该反馈用于训练二元分类模型,最终找到其他与搜索目标呈现相似模式的区域。我们通过基因组学的案例研究展示了Peax的特性,并报告了一项针对八位领域专家的用户研究,以评估Peax的可用性和实用性。此外,我们在另外两项用户研究中评估了学习到的特征表示在视觉相似性搜索中的有效性。我们发现,我们的模型比其他常用技术检索到的相似模式要多得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bb1/8323802/64f8847a67b0/nihms-1656654-f0004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验