Suppr超能文献

HiPiler:使用交互式小多图可视化探索大型基因组互作矩阵

HiPiler: Visual Exploration of Large Genome Interaction Matrices with Interactive Small Multiples.

出版信息

IEEE Trans Vis Comput Graph. 2018 Jan;24(1):522-531. doi: 10.1109/TVCG.2017.2745978. Epub 2017 Aug 29.

Abstract

This paper presents an interactive visualization interface-HiPiler-for the exploration and visualization of regions-of-interest in large genome interaction matrices. Genome interaction matrices approximate the physical distance of pairs of regions on the genome to each other and can contain up to 3 million rows and columns with many sparse regions. Regions of interest (ROIs) can be defined, e.g., by sets of adjacent rows and columns, or by specific visual patterns in the matrix. However, traditional matrix aggregation or pan-and-zoom interfaces fail in supporting search, inspection, and comparison of ROIs in such large matrices. In HiPiler, ROIs are first-class objects, represented as thumbnail-like "snippets". Snippets can be interactively explored and grouped or laid out automatically in scatterplots, or through dimension reduction methods. Snippets are linked to the entire navigable genome interaction matrix through brushing and linking. The design of HiPiler is based on a series of semi-structured interviews with 10 domain experts involved in the analysis and interpretation of genome interaction matrices. We describe six exploration tasks that are crucial for analysis of interaction matrices and demonstrate how HiPiler supports these tasks. We report on a user study with a series of data exploration sessions with domain experts to assess the usability of HiPiler as well as to demonstrate respective findings in the data.

摘要

本文提出了一个交互式可视化界面-HiPiler-用于探索和可视化大型基因组互作矩阵中的感兴趣区域。基因组互作矩阵近似于基因组上对区域彼此之间的物理距离,可以包含多达 300 万行和列,并且有许多稀疏区域。感兴趣区域 (ROI) 可以通过例如相邻行和列的集合,或者矩阵中的特定视觉模式来定义。然而,传统的矩阵聚合或平移缩放接口在支持搜索、检查和比较此类大型矩阵中的 ROI 方面失败了。在 HiPiler 中,ROI 是第一类对象,用缩略图状的“片段”表示。片段可以通过交互方式进行探索,并通过散点图或降维方法自动进行分组或布局。片段通过刷选和链接与可导航的整个基因组互作矩阵相关联。HiPiler 的设计基于对 10 位参与基因组互作矩阵分析和解释的领域专家进行的一系列半结构化访谈。我们描述了对于分析互作矩阵至关重要的六个探索任务,并展示了 HiPiler 如何支持这些任务。我们报告了一项用户研究,其中包括一系列与领域专家的数据探索会议,以评估 HiPiler 的可用性,并展示数据中的相应发现。

相似文献

2
3
Compressed Adjacency Matrices: Untangling Gene Regulatory Networks.压缩邻接矩阵:解开基因调控网络。
IEEE Trans Vis Comput Graph. 2012 Dec;18(12):2457-66. doi: 10.1109/TVCG.2012.208.
4
Visualization: A Mind-Machine Interface for Discovery.可视化:用于探索的人机界面。
Trends Genet. 2016 Feb;32(2):73-75. doi: 10.1016/j.tig.2015.12.002. Epub 2015 Dec 28.
7
Genome visualization made fast and simple.基因组可视化变得快速又简单。
Bioinformatics. 2003 Jul 22;19(11):1449-50. doi: 10.1093/bioinformatics/btg152.
10

引用本文的文献

1
Aardvark: Composite Visualizations of Trees, Time-Series, and Images.土豚:树状图、时间序列和图像的复合可视化
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):1290-1300. doi: 10.1109/TVCG.2024.3456193. Epub 2024 Nov 25.
6
Visualizing and Annotating Hi-C Data.可视化和标注 Hi-C 数据。
Methods Mol Biol. 2022;2301:97-132. doi: 10.1007/978-1-0716-1390-0_5.
7
8
Coolpup.py: versatile pile-up analysis of Hi-C data.Coolpup.py:用于 Hi-C 数据的多功能重复序列分析。
Bioinformatics. 2020 May 1;36(10):2980-2985. doi: 10.1093/bioinformatics/btaa073.
10
Tasks, Techniques, and Tools for Genomic Data Visualization.基因组数据可视化的任务、技术和工具。
Comput Graph Forum. 2019 Jun;38(3):781-805. doi: 10.1111/cgf.13727. Epub 2019 Jul 10.

本文引用的文献

2
Comparison of computational methods for Hi-C data analysis.用于Hi-C数据分析的计算方法比较。
Nat Methods. 2017 Jul;14(7):679-685. doi: 10.1038/nmeth.4325. Epub 2017 Jun 12.
3
Nucleome Analysis Reveals Structure-Function Relationships for Colon Cancer.细胞核组分析揭示结肠癌的结构-功能关系。
Mol Cancer Res. 2017 Jul;15(7):821-830. doi: 10.1158/1541-7786.MCR-16-0374. Epub 2017 Mar 3.
4
Software tools for visualizing Hi-C data.用于可视化Hi-C数据的软件工具。
Genome Biol. 2017 Feb 3;18(1):26. doi: 10.1186/s13059-017-1161-y.
5
From Visual Exploration to Storytelling and Back Again.从视觉探索到故事讲述,再回归原点。
Comput Graph Forum. 2016 Jun;35(3):491-500. doi: 10.1111/cgf.12925. Epub 2016 Jul 4.
9
Activation of proto-oncogenes by disruption of chromosome neighborhoods.染色体邻域破坏导致原癌基因激活。
Science. 2016 Mar 25;351(6280):1454-1458. doi: 10.1126/science.aad9024. Epub 2016 Mar 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验