Department of Biology, James Madison University, Harrisonburg, VA 22807.
Massanutten Governor's School/Harrisonburg High School, Mount Jackson, VA 22842.
CBE Life Sci Educ. 2019 Sep;18(3):ar32. doi: 10.1187/cbe.18-06-0102.
Given the centrality of data visualizations in communicating scientific information, increased emphasis has been placed on the development of students' graph literacy-the ability to generate and interpret data representations-to foster understanding of domain-specific knowledge and the successful navigation of everyday life. Despite prior literature that identifies student difficulties and methods to improve graphing competencies, there is little understanding as to how learners develop these skills. To gain a better resolution of the cognitive basis by which individuals "see" graphs, this study uses eye tracking (ET) to compare the strategies of non-science undergraduates ( = 9), early ( = 7) and advanced ( = 8) biology undergraduates, graduate students ( = 6), and science faculty ( = 6) in making sense of data displays. Results highlight variation in how individuals direct their attention (i.e., fixations and visual search patterns) when completing graph-based tasks as a function of science expertise. As research on the transition from novice to expert is crucially important in understanding how we might design curricula that help novices move toward more expert-like performance, this study has implications for the advancement of new strategies to aid the teaching and learning of data analysis skills.
鉴于数据可视化在传达科学信息方面的核心地位,人们越来越重视培养学生的图表素养——即生成和解释数据表示的能力——以促进对特定领域知识的理解和成功应对日常生活。尽管之前的文献已经确定了学生的困难和提高制图能力的方法,但对于学习者如何发展这些技能却知之甚少。为了更好地了解个体“观察”图表的认知基础,本研究使用眼动追踪(ET)来比较非理科本科生(=9)、早期(=7)和高级(=8)生物学本科生、研究生(=6)和理科教师(=6)在理解数据显示时的策略。结果突出了个体在完成基于图表的任务时注意力指向(即注视和视觉搜索模式)的差异,这取决于科学专业知识。由于研究从新手到专家的转变对于理解我们如何设计帮助新手向更专家式表现转变的课程至关重要,因此这项研究对于制定新策略以帮助教授和学习数据分析技能具有重要意义。