Suppr超能文献

用于先进催化的低维铂基金属双纳米结构

Low Dimensional Platinum-Based Bimetallic Nanostructures for Advanced Catalysis.

作者信息

Shao Qi, Wang Pengtang, Zhu Ting, Huang Xiaoqing

机构信息

College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China.

出版信息

Acc Chem Res. 2019 Dec 17;52(12):3384-3396. doi: 10.1021/acs.accounts.9b00262. Epub 2019 Aug 9.

Abstract

The development of renewable energy storage and conversion has been greatly promoted by the achievements in platinum (Pt)-based catalysts, which possess remarkable catalytic performance. However, the high cost and limited resources of Pt have hindered the practical applications and thus stimulated extensive efforts to achieve maximized catalytic performance with minimized Pt content. Low dimensional Pt-based bimetallic nanomaterials (such as nanoplates and nanowires) hold enormous potential to realize this target owing to their special atomic arrangement and electronic structures. Recent achievements reveal that strain engineering (e.g., the compressive or tensile strain existing on the Pt skin), surface engineering (e.g., high-index facets, Pt-rich surface, and highly open structures), and interface engineering (e.g., composition-segregated nanostructures) for such nanomaterials can readily lead to electronic modification, more active sites, and strong synergistic effect, thus opening up new avenues toward greatly enhanced catalytic performance. In this Account, we focus on recent advances in low dimensional Pt-based bimetallic nanomaterials as promising catalysts with high activity, long-term stability, and enhanced selectivity for both electrocatalysis and heterogeneous reactions. We begin by illustrating the important role of several strategies on optimizing the catalytic performance: (1) regulated electronic structure by strain effect, (2) increased active sites by surface modification, and (3) the optimized synergistic effect by interfacial engineering. First of all, a difference in atomic bonding strength can result in compressive or tensile force, leading to downshift or upshift of the d-band center. Such effects can be significantly amplified in low-dimensionally confined nanostructures, producing optimized bonding strength for improved catalysis. Furthermore, a high density of high-index facets and a Pt-rich surface in shape-controlled nanostructures based on surface engineering provide further enhancement due to the increased Pt atom utilization and optimal adsorption energy. Finally, interfacial engineering of low dimensional Pt-based bimetallic nanomaterials with high composition-segregation can facilitate the catalytic process due to a strong synergetic effect, which effectively tunes the electronic structure, modifies the coordination environment, and prevents catalysts from serious aggregation. The rational design of low dimensional Pt-based bimetallic nanomaterials with superior catalytic properties based on strain, surface, and interface engineering could help realize enhanced catalysis, gain deep understanding of the structure-performance relationship, and expand access to Pt-based materials for general communities of materials science, chemical engineering, and catalysis in renewable energy research fields.

摘要

基于铂(Pt)的催化剂所取得的成果极大地推动了可再生能源存储与转换的发展,这类催化剂具有卓越的催化性能。然而,Pt的高成本和有限资源阻碍了其实际应用,因此激发了人们为以最少的Pt含量实现最大化催化性能而付出的广泛努力。低维Pt基金属双纳米材料(如纳米片和纳米线)因其特殊的原子排列和电子结构,在实现这一目标方面具有巨大潜力。最近的研究成果表明,对这类纳米材料进行应变工程(例如,Pt表面存在的压缩或拉伸应变)、表面工程(例如,高指数晶面、富Pt表面和高度开放的结构)以及界面工程(例如,成分分离的纳米结构),能够轻易地实现电子改性、增加活性位点并产生强大的协同效应,从而为大幅提升催化性能开辟新途径。在本综述中,我们聚焦于低维Pt基金属双纳米材料作为具有高活性、长期稳定性以及对电催化和多相反应均具有增强选择性的有前景催化剂的最新进展。我们首先阐述几种策略在优化催化性能方面的重要作用:(1)通过应变效应调节电子结构,(2)通过表面改性增加活性位点,(3)通过界面工程优化协同效应。首先,原子键合强度的差异会导致压缩力或拉伸力,从而使d带中心下移或上移。这种效应在低维受限纳米结构中会显著放大,产生优化的键合强度以改善催化性能。此外,基于表面工程的形状可控纳米结构中的高密度高指数晶面和富Pt表面,由于Pt原子利用率的提高和最佳吸附能,可进一步增强催化性能。最后,具有高成分分离的低维Pt基金属双纳米材料的界面工程,由于强大的协同效应可促进催化过程,该效应能有效调节电子结构、改变配位环境并防止催化剂严重聚集。基于应变、表面和界面工程合理设计具有优异催化性能的低维Pt基金属双纳米材料,有助于实现增强催化作用,深入理解结构 - 性能关系,并为可再生能源研究领域的材料科学、化学工程和催化等一般领域的人们提供更多获取Pt基材料的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验