Suppr超能文献

链接色成像自动诊断系统在幽门螺杆菌感染诊断中的应用潜力。

Potential of automatic diagnosis system with linked color imaging for diagnosis of Helicobacter pylori infection.

机构信息

Department of Gastroenterology, Asahi University Hospital, Gifu, Japan.

Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan.

出版信息

Dig Endosc. 2020 Mar;32(3):373-381. doi: 10.1111/den.13509. Epub 2019 Oct 2.

Abstract

BACKGROUND AND AIM

It is necessary to establish universal methods for endoscopic diagnosis of Helicobacter pylori (HP) infection, such as computer-aided diagnosis. In the present study, we propose a multistage diagnosis algorithm for HP infection.

METHODS

The aims of this study are to: (i) to construct an interpretable automatic diagnostic system using a support vector machine for HP infection; and (ii) to compare the diagnosis capability of our artificial intelligence (AI) system with that of endoscopists. Presence of an HP infection determined through linked color imaging (LCI) was learned through machine learning. Trained classifiers automatically diagnosed HP-positive and -negative patients examined using LCI. We retrospectively analyzed the new images from 105 consecutive patients; 42 were HP positive, 46 were post-eradication, and 17 were uninfected. Five endoscopic images per case taken from different areas were read into the AI system, and used in the HP diagnosis.

RESULTS

Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the diagnosis of HP infection using the AI system were 87.6%, 90.4%, 85.7%, 80.9%, and 93.1%, respectively. Accuracy of the AI system was higher than that of an inexperienced doctor, but there was no significant difference between the diagnosis of experienced physicians and the AI system.

CONCLUSIONS

The AI system can diagnose an HP infection with significant accuracy. There remains room for improvement, particularly for the diagnosis of post-eradication patients. By learning more images and considering a diagnosis algorithm for post-eradication patients, our new AI system will provide diagnostic support, particularly to inexperienced physicians.

摘要

背景与目的

有必要建立普遍适用的幽门螺杆菌(HP)感染内镜诊断方法,例如计算机辅助诊断。本研究提出了一种用于 HP 感染的多阶段诊断算法。

方法

本研究旨在:(i)构建一种基于支持向量机的可解释自动诊断 HP 感染的诊断系统;(ii)比较我们的人工智能(AI)系统与内镜医生的诊断能力。通过链接色成像(LCI)确定的 HP 感染通过机器学习进行学习。经过训练的分类器自动诊断 LCI 检查的 HP 阳性和阴性患者。我们回顾性分析了 105 例连续患者的新图像;42 例为 HP 阳性,46 例为根治后,17 例为未感染。从不同部位采集每个病例的 5 张内镜图像输入 AI 系统,并用于 HP 诊断。

结果

使用 AI 系统诊断 HP 感染的准确性、敏感性、特异性、阳性预测值和阴性预测值分别为 87.6%、90.4%、85.7%、80.9%和 93.1%。AI 系统的诊断准确性高于无经验医生,但与经验丰富的医生相比,AI 系统的诊断并无显著差异。

结论

AI 系统可以准确诊断 HP 感染。仍有改进的空间,特别是在根治后患者的诊断方面。通过学习更多的图像并考虑根治后患者的诊断算法,我们的新 AI 系统将提供诊断支持,特别是对无经验的医生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验