National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
J Colloid Interface Sci. 2019 Nov 1;555:449-459. doi: 10.1016/j.jcis.2019.07.099. Epub 2019 Jul 31.
Ultrafine CoFe nanoparticles embedded in nitrogen-doped porous carbon nanosheets (denoted as CoFe/NPCSs) are successfully synthesized by utilizing porous plant tissue as a precursor. The morphological, structural, and chemical contents of the CoFe/NPCSs and other control samples are analyzed by X-ray (powder) diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N adsorption-desorption, Raman spectroscopy, inductively coupled plasma (ICP), and X-ray photoelectron spectroscopy (XPS) techniques. The glucose oxidation and detection performances of each catalyst are evaluated by using cyclic voltammetry and chronoamperometry. The experimental results demonstrate that the electrocatalytic abilities of the resultant catalysts toward glucose oxidation decrease in the order of CoFe/NPCSs > Co/NPCSs > CoFe/NPCSs > FeC-CoFe/NPCSs > FeC/NPCSs. The experimental results prove that a small number of Fe atoms in CoFe can increase the number of active Co sites. Meanwhile, the ultrafine CoFe nanoparticles uniformly dispersed along the porous carbon nanosheets' surfaces, which further improved the dispersion of the abundant electrochemically available active sites. Due to the synergistic effect of the hierarchical porous structures, high-density active sites and excellent electron conductivity, the optimal CoFe/NPCSs display the best glucose detection efficiency of all the catalysts examined. For instance, the CoFe/NPCSs exhibit large sensitivity values (795.28 µA cm mM between 0.001 and 2.20 mM and 401.98 μA cm mM between 2.20 and 14.00 mM), a rapid response time (2.2 s), a low detection limit (1.0 µM), excellent anti-interference toward electroactive molecules, a perfect reproducibility and a superior long-term stability. The CoFe/NPCSs also exhibit a satisfying efficiency for glucose detection in human serum samples. Finally, our low-cost synthetic strategy can advance research used for designing 3D hierarchical meso/macroporous noble-metal-free catalysts without any tedious steps or templates.
利用多孔植物组织作为前驱体,成功合成了嵌入氮掺杂多孔碳纳米片(表示为 CoFe/NPCSs)中的超细 CoFe 纳米粒子。通过 X 射线(粉末)衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2 吸附-脱附、拉曼光谱、电感耦合等离子体(ICP)和 X 射线光电子能谱(XPS)技术分析了 CoFe/NPCSs 和其他对照样品的形态、结构和化学成分。通过循环伏安法和计时电流法评估了每种催化剂的葡萄糖氧化和检测性能。实验结果表明,所得催化剂对葡萄糖氧化的电催化能力按 CoFe/NPCSs>Co/NPCSs>CoFe/NPCSs>FeC-CoFe/NPCSs>FeC/NPCSs 的顺序降低。实验结果证明,CoFe 中的少量 Fe 原子可以增加活性 Co 位点的数量。同时,超细 CoFe 纳米粒子均匀分散在多孔碳纳米片表面,进一步提高了丰富的电化学可用活性位点的分散性。由于分级多孔结构、高密度活性位点和优异的电子导电性的协同作用,最佳的 CoFe/NPCSs 显示出所有测试催化剂中最好的葡萄糖检测效率。例如,CoFe/NPCSs 表现出大的灵敏度值(在 0.001 到 2.20 mM 之间为 795.28 µA cm mM,在 2.20 到 14.00 mM 之间为 401.98 μA cm mM)、快速响应时间(2.2 s)、低检测限(1.0 µM)、对电活性分子的优异抗干扰性、完美的重现性和出色的长期稳定性。CoFe/NPCSs 对人血清样品中的葡萄糖检测也表现出令人满意的效率。最后,我们的低成本合成策略可以推进用于设计 3D 分级中/大孔无贵金属催化剂的研究,而无需任何繁琐的步骤或模板。