Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
Psychophysiology. 2019 Dec;56(12):e13451. doi: 10.1111/psyp.13451. Epub 2019 Aug 12.
Baseline correction plays an important role in past and current methodological debates in ERP research (e.g., the Tanner vs. Maess debate in the Journal of Neuroscience Methods), serving as a potential alternative to strong high-pass filtering. However, the very assumptions that underlie traditional baseline also undermine it, implying a reduction in the signal-to-noise ratio. In other words, traditional baseline correction is statistically unnecessary and even undesirable. Including the baseline interval as a predictor in a GLM-based statistical approach allows the data to determine how much baseline correction is needed, including both full traditional and no baseline correction as special cases. This reduces the amount of variance in the residual error term and thus has the potential to increase statistical power.
基线校正在过去和当前的 ERP 研究方法学争论中起着重要作用(例如,《神经科学方法杂志》中的 Tanner 与 Maess 之争),它是强高通滤波的潜在替代方法。然而,传统基线所依据的假设也破坏了它,这意味着信噪比的降低。换句话说,传统的基线校正在统计学上是不必要的,甚至是不可取的。在基于 GLM 的统计方法中,将基线间隔作为一个预测因子包括在内,可以让数据确定需要进行多少基线校正,包括完全传统的和无基线校正作为特例。这减少了残差误差项中的方差,从而有可能提高统计功效。
Psychophysiology. 2018-6
Clin Neurophysiol. 2010-2
Appl Psychophysiol Biofeedback. 2017-12
Int J Psychophysiol. 2019-6-19
Psychophysiology. 2024-6
Int J Psychophysiol. 2017-1
J Neurosci Methods. 2005-3-15
Nat Commun. 2025-8-22
Commun Biol. 2025-7-10
Cogn Neurodyn. 2024-12
Lang Cogn Neurosci. 2024-4-24