Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
Nat Chem Biol. 2019 Nov;15(11):1043-1048. doi: 10.1038/s41589-019-0331-5. Epub 2019 Aug 12.
Microbes produce specialized metabolites to thrive in their natural habitats. However, it is rare that a given specialized metabolite is biosynthesized via pathways with distinct intermediates and enzymes. Here, we show that the core assembly mechanism of the antibiotic indolmycin in marine gram-negative Pseudoalteromonas luteoviolacea is distinct from its counterpart in terrestrial gram-positive Streptomyces species, with a molecule that is a shunt product in the Streptomyces pathway employed as a biosynthetic substrate for a novel metal-independent N-demethylindolmycin synthase in the P. luteoviolacea pathway. To provide insight into this reaction, we solved the 1.5 Å resolution structure in complex with product and identified the active site residues. Guided by our biosynthetic insights, we then engineered the Streptomyces indolmycin producer for titer improvement. This study provides a paradigm for understanding how two unique routes to a microbial specialized metabolite can emerge from convergent biosynthetic transformations.
微生物会产生特殊代谢物以在其自然栖息地中繁衍生息。然而,给定的特殊代谢物很少是通过具有独特中间产物和酶的途径生物合成的。在这里,我们表明海洋革兰氏阴性假交替单胞菌中抗生素吲哚霉素的核心组装机制与其在陆地革兰氏阳性链霉菌属中的对应机制不同,链霉菌途径中的一种分流产物被用作新型金属非依赖性 N-去甲基吲哚霉素合酶在假交替单胞菌途径中的生物合成底物。为了深入了解这一反应,我们解析了与产物复合物的 1.5Å 分辨率结构,并鉴定了活性位点残基。根据我们的生物合成见解,我们随后对链霉菌吲哚霉素产生菌进行了工程改造以提高产量。这项研究为理解两种独特的微生物特殊代谢物途径如何从趋同的生物合成转化中出现提供了范例。