Bárcena-González G, Guerrero-Lebrero M P, Guerrero E, Yañez A, Nuñez-Moraleda B, Kepaptsoglou D, Lazarov V K, Galindo P L
Department of Computer Science and Engineering, Universidad de Cádiz, 11510 Puerto Real, Spain.
Department of Physics, University of York, Heslington, York, UK.
Microsc Microanal. 2019 Dec;25(6):1297-1303. doi: 10.1017/S1431927619014788.
From simple averaging to more sophisticated registration and restoration strategies, such as super-resolution (SR), there exist different computational techniques that use a series of images of the same object to generate enhanced images where noise and other distortions have been reduced. In this work, we provide qualitative and quantitative measurements of this enhancement for high-angle annular dark-field scanning transmission electron microscopy imaging. These images are compared in two ways, qualitatively through visual inspection in real and reciprocal space, and quantitatively, through the calculation of objective measurements, such as signal-to-noise ratio and atom column roundness. Results show that these techniques improve the quality of the images. In this paper, we use an SR methodology that allows us to take advantage of the information present in the image frames and to reliably facilitate the analysis of more difficult regions of interest in experimental images, such as surfaces and interfaces. By acquiring a series of cross-sectional experimental images of magnetite (Fe3O4) thin films (111), we have generated interpolated images using averaging and SR, and reconstructed the atomic structure of the very top surface layer that consists of a full monolayer of Fe, with topmost Fe atoms in tetrahedrally coordinated sites.
从简单平均到更复杂的配准和恢复策略,如超分辨率(SR),存在不同的计算技术,这些技术使用同一物体的一系列图像来生成噪声和其他失真已降低的增强图像。在这项工作中,我们对高角度环形暗场扫描透射电子显微镜成像的这种增强进行了定性和定量测量。这些图像通过两种方式进行比较,定性地通过在实空间和倒易空间中的目视检查,定量地通过计算诸如信噪比和原子列圆度等客观测量值。结果表明这些技术提高了图像质量。在本文中,我们使用一种超分辨率方法,该方法使我们能够利用图像帧中存在的信息,并可靠地促进对实验图像中更困难的感兴趣区域(如表面和界面)的分析。通过获取磁铁矿(Fe3O4)薄膜(111)的一系列横截面实验图像,我们使用平均和超分辨率生成了插值图像,并重建了由完整单层Fe组成的最顶层表面层的原子结构,最顶层的Fe原子位于四面体配位位点。