Suppr超能文献

亚里士多德分类器:利用完整的糖组学特征来指示疾病状态。

The Aristotle Classifier: Using the Whole Glycomic Profile To Indicate a Disease State.

机构信息

Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States.

出版信息

Anal Chem. 2019 Sep 3;91(17):11070-11077. doi: 10.1021/acs.analchem.9b01606. Epub 2019 Aug 13.

Abstract

"The totality is not, as it were, a mere heap, but the whole is something besides the parts."-Aristotle. We built a classifier that uses the totality of the glycomic profile, not restricted to a few glycoforms, to differentiate samples from two different sources. This approach, which relies on using thousands of features, is a radical departure from current strategies, where most of the glycomic profile is ignored in favor of selecting a few features, or even a single feature, meant to capture the differences in sample types. The classifier can be used to differentiate the source of the material; applicable sources may be different species of animals, different protein production methods, or, most importantly, different biological states (disease vs healthy). The classifier can be used on glycomic data in any form, including derivatized monosaccharides, intact glycans, or glycopeptides. It takes advantage of the fact that changing the source material can cause a change in the glycomic profile in many subtle ways: some glycoforms can be upregulated, some downregulated, some may appear unchanged, yet their proportion-with respect to other forms present-can be altered to a detectable degree. By classifying samples using the entirety of their glycan abundances, along with the glycans' relative proportions to each other, the "Aristotle Classifier" is more effective at capturing the underlying trends than standard classification procedures used in glycomics, including PCA (principal components analysis). It also outperforms workflows where a single, representative glycomic-based biomarker is used to classify samples. We describe the Aristotle Classifier and provide several examples of its utility for biomarker studies and other classification problems using glycomic data from several sources.

摘要

“整体不是一堆东西,而是整体之外的东西。”——亚里士多德。我们构建了一个分类器,它使用糖组学特征的整体,而不是仅限于少数糖型,来区分来自两个不同来源的样本。这种方法依赖于使用数千个特征,与当前的策略有很大的不同,当前的策略忽略了大部分糖组学特征,而倾向于选择少数特征,甚至是单个特征,以捕捉样本类型的差异。该分类器可用于区分物质的来源;适用的来源可能是不同的动物物种、不同的蛋白质生产方法,或者最重要的是不同的生物状态(疾病与健康)。该分类器可用于任何形式的糖组学数据,包括衍生的单糖、完整的聚糖或糖肽。它利用了这样一个事实,即改变源材料可能会以许多微妙的方式改变糖组学特征:一些糖型可能上调,一些下调,一些可能保持不变,但它们与其他存在形式的比例可能会发生变化,达到可检测的程度。通过使用糖基化特征的整体以及它们之间的相对比例来对样本进行分类,“亚里士多德分类器”比糖组学中使用的标准分类程序(包括主成分分析)更有效地捕捉潜在趋势。它也优于使用单个代表性糖基化生物标志物对样本进行分类的工作流程。我们描述了亚里士多德分类器,并提供了几个使用来自多个来源的糖组学数据进行生物标志物研究和其他分类问题的实用示例。

相似文献

1
The Aristotle Classifier: Using the Whole Glycomic Profile To Indicate a Disease State.
Anal Chem. 2019 Sep 3;91(17):11070-11077. doi: 10.1021/acs.analchem.9b01606. Epub 2019 Aug 13.
2
Glycomic analysis using glycoprotein immobilization for glycan extraction.
Anal Chem. 2013 Jun 4;85(11):5555-61. doi: 10.1021/ac400761e. Epub 2013 May 20.
4
Comparative glycomic profiling in esophageal adenocarcinoma.
J Thorac Cardiovasc Surg. 2010 May;139(5):1216-23. doi: 10.1016/j.jtcvs.2009.12.045.
5
7
Serum glycomic profile as a predictive biomarker of recurrence in patients with differentiated thyroid cancer.
Cancer Med. 2023 Mar;12(6):6768-6777. doi: 10.1002/cam4.5465. Epub 2022 Nov 27.
9
A New titania glyco-purification tip for the fast enrichment and efficient analysis of glycopeptides and glycans by MALDI-TOF-MS.
J Pharm Biomed Anal. 2019 Sep 10;174:191-197. doi: 10.1016/j.jpba.2019.05.061. Epub 2019 May 28.
10
Serum N-glycomic profiling may provide potential signatures for surveillance of COVID-19.
Glycobiology. 2022 Sep 19;32(10):871-885. doi: 10.1093/glycob/cwac051.

引用本文的文献

1
Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases.
Mass Spectrom Rev. 2023 Sep-Oct;42(5):1848-1875. doi: 10.1002/mas.21792. Epub 2022 Jun 20.
2
Exposing the Brain Proteomic Signatures of Alzheimer's Disease in Diverse Racial Groups: Leveraging Multiple Data Sets and Machine Learning.
J Proteome Res. 2022 Apr 1;21(4):1095-1104. doi: 10.1021/acs.jproteome.1c00966. Epub 2022 Mar 11.
3
Improved Discrimination of Disease States Using Proteomics Data with the Updated Aristotle Classifier.
J Proteome Res. 2021 May 7;20(5):2823-2829. doi: 10.1021/acs.jproteome.1c00066. Epub 2021 Apr 28.
4
The local-balanced model for improved machine learning outcomes on mass spectrometry data sets and other instrumental data.
Anal Bioanal Chem. 2021 Mar;413(6):1583-1593. doi: 10.1007/s00216-020-03117-2. Epub 2021 Feb 13.
5
Quantitative clinical glycomics strategies: A guide for selecting the best analysis approach.
Mass Spectrom Rev. 2022 Nov;41(6):901-921. doi: 10.1002/mas.21688. Epub 2021 Feb 10.
6
Machine Learning Based Analysis of Human Serum glycome Alterations to Follow up Lung Tumor Surgery.
Cancers (Basel). 2020 Dec 9;12(12):3700. doi: 10.3390/cancers12123700.
9
Software tools, databases and resources in metabolomics: updates from 2018 to 2019.
Metabolomics. 2020 Mar 7;16(3):36. doi: 10.1007/s11306-020-01657-3.
10
Adaption of the Aristotle Classifier for Accurately Identifying Highly Similar Bacteria Analyzed by MALDI-TOF MS.
Anal Chem. 2020 Jan 7;92(1):1050-1057. doi: 10.1021/acs.analchem.9b04049. Epub 2019 Dec 10.

本文引用的文献

2
Characterization of IgG N-glycome profile in colorectal cancer progression by MALDI-TOF-MS.
J Proteomics. 2018 Jun 15;181:225-237. doi: 10.1016/j.jprot.2018.04.026. Epub 2018 Apr 23.
5
Validation of an automated ultraperformance liquid chromatography IgG N-glycan analytical method applicable to classical galactosaemia.
Ann Clin Biochem. 2018 Sep;55(5):593-603. doi: 10.1177/0004563218762957. Epub 2018 Mar 13.
8
IgG Fc galactosylation predicts response to methotrexate in early rheumatoid arthritis.
Arthritis Res Ther. 2017 Aug 9;19(1):182. doi: 10.1186/s13075-017-1389-7.
9
The N-glycosylation of immunoglobulin G as a novel biomarker of Parkinson's disease.
Glycobiology. 2017 May 1;27(5):501-510. doi: 10.1093/glycob/cwx022.
10
GlycoPep MassList: software to generate massive inclusion lists for glycopeptide analyses.
Anal Bioanal Chem. 2017 Jan;409(2):561-570. doi: 10.1007/s00216-016-9896-y. Epub 2016 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验