Suppr超能文献

揭示不同种族群体中阿尔茨海默病的脑蛋白质组学特征:利用多个数据集和机器学习

Exposing the Brain Proteomic Signatures of Alzheimer's Disease in Diverse Racial Groups: Leveraging Multiple Data Sets and Machine Learning.

作者信息

Desaire Heather, Stepler Kaitlyn E, Robinson Renã A S

机构信息

Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States.

Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.

出版信息

J Proteome Res. 2022 Apr 1;21(4):1095-1104. doi: 10.1021/acs.jproteome.1c00966. Epub 2022 Mar 11.

Abstract

Recent studies have highlighted that the proteome can be used to identify potential biomarker candidates for Alzheimer's disease (AD) in diverse cohorts. Furthermore, the racial and ethnic background of participants is an important factor to consider to ensure the effectiveness of potential biomarkers for representative populations. A promising approach to survey potential biomarker candidates for diagnosing AD in diverse cohorts is the application of machine learning to proteomics data sets. Herein, we leveraged six existing bottom-up proteomics data sets, which included non-Hispanic White, African American/Black, and Hispanic participants, to study protein changes in AD and cognitively unimpaired participants. Machine learning models were applied to these data sets and resulted in the identification of amyloid-β precursor protein (APP) and heat shock protein β-1 (HSPB1) as two proteins that have high ability to distinguish AD; however, each protein's performance varied based upon the racial and ethnic background of the participants. HSPB1 particularly was helpful for generating high areas under the curve (AUCs) for African American/Black participants. Overall, HSPB1 improved the performance of the machine learning models when combined with APP and/or participant age and is a potential candidate that should be further explored in AD biomarker discovery efforts.

摘要

最近的研究强调,蛋白质组可用于在不同队列中识别阿尔茨海默病(AD)潜在的生物标志物候选物。此外,参与者的种族和族裔背景是一个需要考虑的重要因素,以确保潜在生物标志物对代表性人群的有效性。一种在不同队列中调查用于诊断AD的潜在生物标志物候选物的有前景的方法是将机器学习应用于蛋白质组学数据集。在此,我们利用了六个现有的自下而上的蛋白质组学数据集,其中包括非西班牙裔白人、非裔美国人/黑人以及西班牙裔参与者,来研究AD患者和认知未受损参与者的蛋白质变化。将机器学习模型应用于这些数据集,结果鉴定出淀粉样前体蛋白(APP)和热休克蛋白β-1(HSPB1)为两种具有高区分AD能力的蛋白质;然而,每种蛋白质的性能因参与者的种族和族裔背景而异。HSPB1对非裔美国人/黑人参与者尤其有助于生成高曲线下面积(AUC)。总体而言,HSPB1与APP和/或参与者年龄结合时可提高机器学习模型的性能,并且是一个应在AD生物标志物发现工作中进一步探索的潜在候选物。

相似文献

1
Exposing the Brain Proteomic Signatures of Alzheimer's Disease in Diverse Racial Groups: Leveraging Multiple Data Sets and Machine Learning.
J Proteome Res. 2022 Apr 1;21(4):1095-1104. doi: 10.1021/acs.jproteome.1c00966. Epub 2022 Mar 11.
2
Why Inclusion Matters for Alzheimer's Disease Biomarker Discovery in Plasma.
J Alzheimers Dis. 2021;79(3):1327-1344. doi: 10.3233/JAD-201318.
4
Inclusion of African American/Black adults in a pilot brain proteomics study of Alzheimer's disease.
Neurobiol Dis. 2020 Dec;146:105129. doi: 10.1016/j.nbd.2020.105129. Epub 2020 Oct 10.
5
Proteomic clusters underlie heterogeneity in preclinical Alzheimer's disease progression.
Brain. 2023 Jul 3;146(7):2944-2956. doi: 10.1093/brain/awac484.
10
High performance plasma amyloid-β biomarkers for Alzheimer's disease.
Nature. 2018 Feb 8;554(7691):249-254. doi: 10.1038/nature25456. Epub 2018 Jan 31.

引用本文的文献

1
Bridging Health Disparity Gaps in Alzheimer's Disease among Marginalized Populations: Clinical Proteomics as a Case Study.
ACS Bio Med Chem Au. 2025 Jul 8;5(4):505-518. doi: 10.1021/acsbiomedchemau.5c00074. eCollection 2025 Aug 20.
2
MSIght: A Modular Platform for Improved Confidence in Global, Untargeted Mass Spectrometry Imaging Annotation.
J Proteome Res. 2025 May 2;24(5):2478-2490. doi: 10.1021/acs.jproteome.4c01140. Epub 2025 Apr 8.
3
Small Heat Shock Proteins: Protein Aggregation Amelioration and Neuro- and Age-Protective Roles.
Int J Mol Sci. 2025 Feb 11;26(4):1525. doi: 10.3390/ijms26041525.
5
Establishing Quality Control Metrics for Large-Scale Plasma Proteomic Sample Preparation.
ACS Meas Sci Au. 2024 Apr 29;4(4):442-451. doi: 10.1021/acsmeasuresciau.3c00070. eCollection 2024 Aug 21.
6
Skin Surface Sebum Analysis by ESI-MS.
Biomolecules. 2024 Jul 3;14(7):790. doi: 10.3390/biom14070790.
7
Large-scale Deep Proteomic Analysis in Alzheimer's Disease Brain Regions Across Race and Ethnicity.
bioRxiv. 2024 Apr 26:2024.04.22.590547. doi: 10.1101/2024.04.22.590547.
8
Reactive astrocytes secrete the chaperone HSPB1 to mediate neuroprotection.
Sci Adv. 2024 Mar 22;10(12):eadk9884. doi: 10.1126/sciadv.adk9884. Epub 2024 Mar 20.
10
Advances, obstacles, and opportunities for machine learning in proteomics.
Cell Rep Phys Sci. 2022 Oct 19;3(10). doi: 10.1016/j.xcrp.2022.101069. Epub 2022 Sep 22.

本文引用的文献

1
Relationship between Residential Segregation, Later-Life Cognition, and Incident Dementia across Race/Ethnicity.
Int J Environ Res Public Health. 2021 Oct 26;18(21):11233. doi: 10.3390/ijerph182111233.
4
Improved Discrimination of Disease States Using Proteomics Data with the Updated Aristotle Classifier.
J Proteome Res. 2021 May 7;20(5):2823-2829. doi: 10.1021/acs.jproteome.1c00066. Epub 2021 Apr 28.
5
TMTpro-18plex: The Expanded and Complete Set of TMTpro Reagents for Sample Multiplexing.
J Proteome Res. 2021 May 7;20(5):2964-2972. doi: 10.1021/acs.jproteome.1c00168. Epub 2021 Apr 26.
6
2021 Alzheimer's disease facts and figures.
Alzheimers Dement. 2021 Mar;17(3):327-406. doi: 10.1002/alz.12328. Epub 2021 Mar 23.
7
Why Inclusion Matters for Alzheimer's Disease Biomarker Discovery in Plasma.
J Alzheimers Dis. 2021;79(3):1327-1344. doi: 10.3233/JAD-201318.
9
Inclusion of African American/Black adults in a pilot brain proteomics study of Alzheimer's disease.
Neurobiol Dis. 2020 Dec;146:105129. doi: 10.1016/j.nbd.2020.105129. Epub 2020 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验