Suppr超能文献

基于散热器解决方案的金属增材制造分析热模型

Analytical Thermal Modeling of Metal Additive Manufacturing by Heat Sink Solution.

作者信息

Ning Jinqiang, Sievers Daniel E, Garmestani Hamid, Liang Steven Y

机构信息

Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, USA.

The Boeing Company, Huntsville, AL 35824, USA.

出版信息

Materials (Basel). 2019 Aug 12;12(16):2568. doi: 10.3390/ma12162568.

Abstract

Metal additive manufacturing can produce geometrically complex parts with effective cost. The high thermal gradients due to the repeatedly rapid heat and solidification cause defects in the produced parts, such as cracks, porosity, undesired residual stress, and part distortion. Different techniques were employed for temperature investigation. Experimental measurement and finite element method-based numerical models are limited by the restricted accessibility and expensive computational cost, respectively. The available physics-based analytical model has promising short computational efficiency without resorting to finite element method or any iteration-based simulations. However, the heat transfer boundary condition cannot be considered without the involvement of finite element method or iteration-based simulations, which significantly reduces the computational efficiency, and thus the usefulness of the developed model. This work presents an explicit and closed-form solution, namely heat sink solution, to consider the heat transfer boundary condition. The heat sink solution was developed from the moving point heat source solution based on heat transfer of convection and radiation. The part boundary is mathematically discretized into many heats sinks due to the non-uniform temperature distribution, which causes non-uniform heat loss. The temperature profiles, thermal gradients, and temperature-affected material properties are calculated and presented. Good agreements were observed upon validation against experimental molten pool measurements.

摘要

金属增材制造能够以有效的成本生产几何形状复杂的零件。由于反复快速加热和凝固而产生的高热梯度会在生产的零件中导致缺陷,如裂纹、孔隙率、不期望的残余应力和零件变形。采用了不同的技术进行温度研究。实验测量和基于有限元方法的数值模型分别受到可及性受限和计算成本高昂的限制。现有的基于物理的解析模型在不借助有限元方法或任何基于迭代的模拟的情况下具有可观的计算效率。然而,在不涉及有限元方法或基于迭代的模拟的情况下无法考虑热传递边界条件,这显著降低了计算效率,进而降低了所开发模型的实用性。这项工作提出了一种显式的封闭形式解,即热沉解,以考虑热传递边界条件。热沉解是基于对流和辐射传热从移动点热源解发展而来的。由于温度分布不均匀,零件边界在数学上被离散为许多热沉,这导致了不均匀的热损失。计算并给出了温度分布、热梯度和受温度影响的材料性能。与实验熔池测量结果进行验证时观察到了良好的一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96eb/6720509/9a92aaaa1767/materials-12-02568-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验