Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research at the National Cancer Institute-Frederick, Frederick, Maryland.
Clin Cancer Res. 2019 Oct 15;25(20):6206-6216. doi: 10.1158/1078-0432.CCR-19-0419. Epub 2019 Aug 13.
Irinotecan and topotecan are used to treat a variety of different cancers. However, they have limitations, including chemical instability and severe side effects. To overcome these limitations, we developed the clinical indenoisoquinolines: LMP400 (indotecan), LMP776 (indimitecan), and LMP744. The purpose of the study is to build the molecular rationale for phase II clinical trials.
CellMinerCDB (http://discover.nci.nih.gov/cellminercdb) was used to mine the cancer cell lines genomic databases. The causality of Schlafen11 (SLFN11) was validated in isogenic cell lines. Because topoisomerase I (TOP1)-mediated replication DNA damage is repaired by homologous recombination (HR), we tested the "synthetic lethality" of HR-deficient (HRD) cells. Survival and cell-cycle alterations were performed after drug treatments in isogenic DT40, DLD1, and OVCAR cell lines with BRCA1, BRCA2, or PALB2 deficiencies and in organoids cultured from prostate cancer patient-derived xenografts with BRCA2 loss. We also used an ovarian orthotopic allograft model with BRCA1 loss to validate the efficacy of LMP400 and olaparib combination.
CellMinerCDB reveals that SLFN11, which kills cells undergoing replicative stress, is a dominant drug determinant to the clinical indenoisoquinolines. In addition, BRCA1-, BRCA2-, and PALB2-deficient cells were hypersensitive to the indenoisoquinolines. All 3 clinical indenoisoquinolines were also synergistic with olaparib, especially in the HRD cells. The synergy between LMP400 and olaparib was confirmed in the orthotopic allograft model harboring BRCA1 loss.
Our results provide a rationale for molecularly designed clinical trials with the indenoisoquinolines as single agents and in combination with PARP inhibitors in HRD cancers expressing SLFN11.
伊立替康和拓扑替康用于治疗多种不同类型的癌症。然而,它们具有局限性,包括化学不稳定性和严重的副作用。为了克服这些局限性,我们开发了临床吲哚喹啉类药物:LMP400(伊立替康)、LMP776(吲明替康)和 LMP744。本研究的目的是为 II 期临床试验构建分子基础。
利用 CellMinerCDB(http://discover.nci.nih.gov/cellminercdb)挖掘癌症细胞系基因组数据库。在同源细胞系中验证 Schlafen11(SLFN11)的因果关系。由于拓扑异构酶 I(TOP1)介导的复制 DNA 损伤是通过同源重组(HR)修复的,我们测试了 HR 缺陷(HRD)细胞的“合成致死性”。在 BRCA1、BRCA2 或 PALB2 缺陷的同源 DT40、DLD1 和 OVCAR 细胞系以及从携带 BRCA2 缺失的前列腺癌患者来源异种移植物培养的类器官中进行药物处理后,进行了存活和细胞周期改变。我们还使用带有 BRCA1 缺失的卵巢原位移植模型来验证 LMP400 和奥拉帕利联合用药的疗效。
CellMinerCDB 显示,杀死经历复制应激的细胞的 SLFN11 是临床吲哚喹啉类药物的主要药物决定因素。此外,BRCA1、BRCA2 和 PALB2 缺陷细胞对吲哚喹啉类药物敏感。所有 3 种临床吲哚喹啉类药物与奥拉帕利联合用药也具有协同作用,尤其是在 HRD 细胞中。在携带 BRCA1 缺失的原位移植模型中,证实了 LMP400 和奥拉帕利的协同作用。
我们的结果为临床吲哚喹啉类药物作为单一药物以及在表达 SLFN11 的 HRD 癌症中与 PARP 抑制剂联合用药的分子设计临床试验提供了依据。