Suppr超能文献

基于迁移学习的叶绿素 a 动态预测神经网络模型。

Transfer learning for neural network model in chlorophyll-a dynamics prediction.

机构信息

UNEP-Tongji Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.

Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.

出版信息

Environ Sci Pollut Res Int. 2019 Oct;26(29):29857-29871. doi: 10.1007/s11356-019-06156-0. Epub 2019 Aug 13.

Abstract

Neural network models have been used to predict chlorophyll-a concentration dynamics. However, as model generalization ability decreases, (i) the performance of the models gradually decreases over time; (ii) the accuracy and performance of the models need to be improved. In this study, Transfer learning (TL) is employed to optimize neural network models (including feedforward neural networks (FNN), recurrent neural networks (RNN) and long short-term memory (LTSM)) and overcome these problems. Models using TL are able to reduce the influence of mutable data distribution and enhance generalization ability. Thus, it can improve the accuracy of prediction and maintain high performance in long-term applications. Also, TL is compared with parameter norm penalties (PNP) and dropout-two other methods used to improve model generalization ability. In general, TL has a better prediction effect than PNP and dropout. All the models, including FNN with different architectures, RNN and LSTM, as well as models optimized by PNP, dropout, and TL, are applied to an estuary reservoir in eastern China to predict chlorophyll-a dynamics at 5-min intervals. According to the results of this study, (i) models with TL produce the best prediction results; (ii) the original models and the models with PNP and dropout lose their ability to predict within 3 months, while TL models retain a high prediction accuracy.

摘要

神经网络模型已被用于预测叶绿素-a 浓度动态。然而,随着模型泛化能力的降低,(i)模型的性能会随着时间的推移逐渐下降;(ii)模型的准确性和性能需要提高。在本研究中,采用迁移学习(TL)来优化神经网络模型(包括前馈神经网络(FNN)、循环神经网络(RNN)和长短期记忆(LTSM)),以克服这些问题。使用 TL 的模型能够减少易变数据分布的影响并增强泛化能力。因此,它可以提高预测的准确性,并在长期应用中保持高性能。此外,TL 与参数范数惩罚(PNP)和 dropout 进行了比较,这两种方法也用于提高模型的泛化能力。一般来说,TL 比 PNP 和 dropout 具有更好的预测效果。所有的模型,包括不同架构的 FNN、RNN 和 LSTM,以及经过 PNP、dropout 和 TL 优化的模型,都被应用于中国东部的一个河口水库,以 5 分钟的间隔预测叶绿素-a 的动态。根据本研究的结果,(i)具有 TL 的模型产生了最佳的预测结果;(ii)原始模型以及具有 PNP 和 dropout 的模型在 3 个月内丧失了预测能力,而 TL 模型保持了较高的预测精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验