Suppr超能文献

使用长短期记忆(LSTM)神经网络预测急诊科候诊时间。

Using Long Short-Term Memory (LSTM) Neural Networks to Predict Emergency Department Wait Time.

作者信息

Cheng Nok, Kuo Alex

机构信息

School of Health Information Science, University of Victoria, Canada.

出版信息

Stud Health Technol Inform. 2020 Jun 26;272:199-202. doi: 10.3233/SHTI200528.

Abstract

Emergency Department (ED) overcrowding is a major global healthcare issue. Many research studies have been conducted to predict ED wait time using various machine learning prediction models to enhance patient experience and improve care efficiency and resource allocation. In this paper, we used Long Short-Term Memory (LSTM) recurrent neural networks to build a model to predict ED wait time in the next 2 hours using a randomly generated patient timestamp dataset of a typical patient hospital journey. Compared with Linear Regression model, the average mean absolute error for the LSTM model is decreased by 9.7% (3 minutes) (p < 0.01). The LSTM model statistically outperforms the LR model, however, both models could be practically useful in ED wait time prediction.

摘要

急诊科过度拥挤是一个重大的全球医疗保健问题。已经进行了许多研究,使用各种机器学习预测模型来预测急诊科等待时间,以提升患者体验、提高护理效率和资源分配。在本文中,我们使用长短期记忆(LSTM)循环神经网络,利用典型患者医院就诊旅程的随机生成患者时间戳数据集,构建一个模型来预测未来两小时的急诊科等待时间。与线性回归模型相比,LSTM模型的平均平均绝对误差降低了9.7%(3分钟)(p < 0.01)。LSTM模型在统计上优于LR模型,然而,这两种模型在急诊科等待时间预测中实际上都可能有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验