State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China.
Antioxid Redox Signal. 2020 Nov 20;33(15):1061-1076. doi: 10.1089/ars.2019.7777. Epub 2019 Sep 9.
Cysteine persulfidation (also called sulfhydration or sulfuration) has emerged as a potential redox mechanism to regulate protein functions and diverse biological processes in hydrogen sulfide (HS) signaling. Due to its intrinsically unstable nature, working with this modification has proven to be challenging. Although methodological progress has expanded the inventory of persulfidated proteins, there is a continued need to develop methods that can directly and unequivocally identify persulfidated cysteine residues in complex proteomes. A quantitative chemoproteomic method termed as low-pH quantitative thiol reactivity profiling (QTRP) was developed to enable direct site-specific mapping and reactivity profiling of proteomic persulfides and thiols in parallel. The method was first applied to cell lysates treated with NaHS, resulting in the identification of overall 1547 persulfidated sites on 994 proteins. Structural analysis uncovered unique consensus motifs that might define this distinct type of modification. Moreover, the method was extended to profile endogenous protein persulfides in cells expressing HS-generating enzyme, mouse tissues, and human serum, which led to additional insights into mechanistic, structural, and functional features of persulfidation events, particularly on human serum albumin. Low-pH QTRP represents the first method that enables direct and unbiased proteomic mapping of cysteine persulfidation. Our method allows to generate the most comprehensive inventory of persulfidated targets of NaHS so far and to perform the first analysis of persulfidation events, providing a valuable tool to dissect the biological functions of this important modification.
半胱氨酸过硫化(也称为巯基化或硫化)已成为一种潜在的氧化还原机制,可调节硫化氢(HS)信号转导中蛋白质的功能和多种生物学过程。由于其内在的不稳定性,研究这种修饰一直具有挑战性。尽管方法学的进步已经扩展了过硫化蛋白质的目录,但仍需要开发可以直接和明确识别复杂蛋白质组中过硫化半胱氨酸残基的方法。
我们开发了一种称为低 pH 值定量硫醇反应性分析(QTRP)的定量化学蛋白质组学方法,以能够直接对蛋白质组中的过硫化物和硫醇进行特异性定位和反应性分析。该方法首先应用于用 NaHS 处理的细胞裂解物,结果鉴定了 994 种蛋白质上的 1547 个过硫化位点。结构分析揭示了可能定义这种独特修饰类型的独特共识基序。此外,该方法还扩展到在表达 HS 生成酶的细胞、小鼠组织和人血清中分析内源性蛋白质过硫化,这为过硫化事件的机制、结构和功能特征提供了更多的见解,特别是对人血清白蛋白。
低 pH 值 QTRP 代表了第一种能够直接、无偏地进行半胱氨酸过硫化蛋白质组学映射的方法。我们的方法能够生成迄今为止最全面的 NaHS 过硫化靶标清单,并首次对过硫化事件进行分析,为剖析这种重要修饰的生物学功能提供了有价值的工具。