Suppr超能文献

皮肤镜图像中的手术皮肤标记与用于黑色素瘤识别的深度学习卷积神经网络诊断性能之间的关联

Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition.

作者信息

Winkler Julia K, Fink Christine, Toberer Ferdinand, Enk Alexander, Deinlein Teresa, Hofmann-Wellenhof Rainer, Thomas Luc, Lallas Aimilios, Blum Andreas, Stolz Wilhelm, Haenssle Holger A

机构信息

Department of Dermatology, University of Heidelberg, Heidelberg, Germany.

Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria.

出版信息

JAMA Dermatol. 2019 Oct 1;155(10):1135-1141. doi: 10.1001/jamadermatol.2019.1735.

Abstract

IMPORTANCE

Deep learning convolutional neural networks (CNNs) have shown a performance at the level of dermatologists in the diagnosis of melanoma. Accordingly, further exploring the potential limitations of CNN technology before broadly applying it is of special interest.

OBJECTIVE

To investigate the association between gentian violet surgical skin markings in dermoscopic images and the diagnostic performance of a CNN approved for use as a medical device in the European market.

DESIGN AND SETTING

A cross-sectional analysis was conducted from August 1, 2018, to November 30, 2018, using a CNN architecture trained with more than 120 000 dermoscopic images of skin neoplasms and corresponding diagnoses. The association of gentian violet skin markings in dermoscopic images with the performance of the CNN was investigated in 3 image sets of 130 melanocytic lesions each (107 benign nevi, 23 melanomas).

EXPOSURES

The same lesions were sequentially imaged with and without the application of a gentian violet surgical skin marker and then evaluated by the CNN for their probability of being a melanoma. In addition, the markings were removed by manually cropping the dermoscopic images to focus on the melanocytic lesion.

MAIN OUTCOMES AND MEASURES

Sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic (ROC) curve for the CNN's diagnostic classification in unmarked, marked, and cropped images.

RESULTS

In all, 130 melanocytic lesions (107 benign nevi and 23 melanomas) were imaged. In unmarked lesions, the CNN achieved a sensitivity of 95.7% (95% CI, 79%-99.2%) and a specificity of 84.1% (95% CI, 76.0%-89.8%). The ROC AUC was 0.969. In marked lesions, an increase in melanoma probability scores was observed that resulted in a sensitivity of 100% (95% CI, 85.7%-100%) and a significantly reduced specificity of 45.8% (95% CI, 36.7%-55.2%, P < .001). The ROC AUC was 0.922. Cropping images led to the highest sensitivity of 100% (95% CI, 85.7%-100%), specificity of 97.2% (95% CI, 92.1%-99.0%), and ROC AUC of 0.993. Heat maps created by vanilla gradient descent backpropagation indicated that the blue markings were associated with the increased false-positive rate.

CONCLUSIONS AND RELEVANCE

This study's findings suggest that skin markings significantly interfered with the CNN's correct diagnosis of nevi by increasing the melanoma probability scores and consequently the false-positive rate. A predominance of skin markings in melanoma training images may have induced the CNN's association of markings with a melanoma diagnosis. Accordingly, these findings suggest that skin markings should be avoided in dermoscopic images intended for analysis by a CNN.

TRIAL REGISTRATION

German Clinical Trial Register (DRKS) Identifier: DRKS00013570.

摘要

重要性

深度学习卷积神经网络(CNN)在黑色素瘤诊断方面已展现出与皮肤科医生相当的诊断水平。因此,在广泛应用CNN技术之前进一步探究其潜在局限性具有特殊意义。

目的

研究皮肤镜图像中龙胆紫手术皮肤标记与一款在欧洲市场获批用作医疗设备的CNN诊断性能之间的关联。

设计与背景

于2018年8月1日至2018年11月30日进行了一项横断面分析,使用了一种CNN架构,该架构用超过120000张皮肤肿瘤皮肤镜图像及相应诊断进行训练。在3组图像集中,每组130个黑素细胞性病变(107个良性痣、23个黑色素瘤)中研究皮肤镜图像中龙胆紫皮肤标记与CNN性能的关联。

暴露因素

对同一病变在涂抹和未涂抹龙胆紫手术皮肤标记的情况下依次进行成像,然后由CNN评估其为黑色素瘤的概率。此外,通过手动裁剪皮肤镜图像去除标记,以聚焦于黑素细胞性病变。

主要结局和测量指标

CNN对未标记、标记和裁剪图像进行诊断分类时,其受试者操作特征(ROC)曲线的敏感性、特异性和曲线下面积(AUC)。

结果

总共对130个黑素细胞性病变(107个良性痣和23个黑色素瘤)进行了成像。在未标记病变中,CNN的敏感性为95.7%(95%CI,79% - 99.2%),特异性为84.1%(95%CI,76.0% - 89.8%)。ROC AUC为0.969。在标记病变中,观察到黑色素瘤概率评分增加,导致敏感性为100%(95%CI,85.7% - 100%),特异性显著降低至45.8%(95%CI,36.7% -  55.2%,P < 0.001)。ROC AUC为0.922。裁剪图像导致最高敏感性为100%(95%CI,85.7% - 100%),特异性为97.2%(95%CI,92.1% - 99.0%),ROC AUC为0.993。由普通梯度下降反向传播创建的热图表明蓝色标记与假阳性率增加相关。

结论与意义

本研究结果表明,皮肤标记通过增加黑色素瘤概率评分进而增加假阳性率,显著干扰了CNN对痣的正确诊断。黑色素瘤训练图像中皮肤标记占主导可能导致CNN将标记与黑色素瘤诊断联系起来。因此,这些发现表明在用于CNN分析的皮肤镜图像中应避免出现皮肤标记。

试验注册

德国临床试验注册中心(DRKS)标识符:DRKS00013570。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验