文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

前列腺癌人工智能与数字病理学的最新进展。

The state of the art in artificial intelligence and digital pathology in prostate cancer.

作者信息

Ni Heyuan Michael, Kouzy Ramez, Sabbagh Ali, Rooney Michael K, Feng Jean, Castillo Simon P, Gadoue Sherif M, El Kouzi Zakaria, Hoffman Karen, Yuan Yinyin, Madabhushi Anant, Mohamad Osama

机构信息

Massachusetts Institute of Technology, Cambridge, MA, USA.

MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Nat Rev Urol. 2025 Aug 4. doi: 10.1038/s41585-025-01070-2.


DOI:10.1038/s41585-025-01070-2
PMID:40760335
Abstract

Prostate cancer is among the most common cancers worldwide, with ~1.5 million new diagnoses globally every year. The sheer mass of data becoming available on prostate cancer, as well as other types of cancer, is increasing exponentially. The growth of digital pathology has particularly sparked interest in developing artificial intelligence (AI) approaches to data synthesis to predict cancer grade and outcomes in men with prostate cancer. Progress has been made in this field, particularly in applications for diagnosis, prognosis and inferring molecular alterations, but several challenges remain. Variability in tissue processing and scanning contribute to dataset heterogeneity. The absence of well-annotated, multi-institutional databases hinders AI model development and generalization of model performances across clinical settings. Regulatory frameworks for AI-driven diagnostics remain nascent. Moreover, bias in training datasets skewing against under-represented demographic groups poses a fundamental challenge to developing equitable models. By mapping contemporary evidence around each of these hurdles and identifying tangible interventions, we can advance AI-augmented digital pathology towards reliable and generalizable tools to improve prostate cancer care.

摘要

前列腺癌是全球最常见的癌症之一,每年全球新增病例约150万例。前列腺癌以及其他类型癌症的可用数据量正呈指数级增长。数字病理学的发展尤其激发了人们对开发人工智能(AI)数据合成方法以预测前列腺癌男性患者癌症分级和预后的兴趣。该领域已取得进展,尤其是在诊断、预后以及推断分子改变等应用方面,但仍存在一些挑战。组织处理和扫描的变异性导致数据集的异质性。缺乏注释良好的多机构数据库阻碍了AI模型的开发以及模型性能在不同临床环境中的推广。AI驱动诊断的监管框架仍处于初期阶段。此外,训练数据集中针对代表性不足的人群的偏差对开发公平模型构成了根本性挑战。通过梳理围绕这些障碍的当代证据并确定切实可行的干预措施,我们可以推动AI增强型数字病理学发展为可靠且通用的工具,以改善前列腺癌的治疗。

相似文献

[1]
The state of the art in artificial intelligence and digital pathology in prostate cancer.

Nat Rev Urol. 2025-8-4

[2]
Variation within and between digital pathology and light microscopy for the diagnosis of histopathology slides: blinded crossover comparison study.

Health Technol Assess. 2025-7

[3]
Short-Term Memory Impairment

2025-1

[4]
Artificial intelligence in inflammatory bowel disease endoscopy - a review of current evidence and a critical perspective on future challenges.

Therap Adv Gastroenterol. 2025-7-13

[5]
Selenium for preventing cancer.

Cochrane Database Syst Rev. 2018-1-29

[6]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[7]
Development and retrospective validation of an artificial intelligence system for diagnostic assessment of prostate biopsies: study protocol.

BMJ Open. 2025-7-7

[8]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[9]
The Use of Artificial Intelligence and Wearable Inertial Measurement Units in Medicine: Systematic Review.

JMIR Mhealth Uhealth. 2025-1-29

[10]
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.

Cochrane Database Syst Rev. 2008-7-16

本文引用的文献

[1]
Assessing Algorithmic Fairness With a Multimodal Artificial Intelligence Model in Men of African and Non-African Origin on NRG Oncology Prostate Cancer Phase III Trials.

JCO Clin Cancer Inform. 2025-5

[2]
Development and Validation of an Artificial Intelligence Digital Pathology Biomarker to Predict Benefit of Long-Term Hormonal Therapy and Radiotherapy in Men With High-Risk Prostate Cancer Across Multiple Phase III Trials.

J Clin Oncol. 2025-4-16

[3]
Digital Pathology-Based Multimodal Artificial Intelligence Scores and Outcomes in a Randomized Phase III Trial in Men With Nonmetastatic Castration-Resistant Prostate Cancer.

JCO Precis Oncol. 2025-1

[4]
Cancer statistics, 2025.

CA Cancer J Clin. 2025

[5]
Advanced AI and ML frameworks for transforming drug discovery and optimization: With innovative insights in polypharmacology, drug repurposing, combination therapy and nanomedicine.

Eur J Med Chem. 2025-2-15

[6]
Digital Pathology-based Artificial Intelligence Biomarker Validation in Metastatic Prostate Cancer.

Eur Urol Oncol. 2025-6

[7]
Fluorescence confocal microscopy for margin assessment in prostatectomy: IP8-FLUORESCE study protocol.

BJU Int. 2025-3

[8]
Validation of an artificial intelligence-based prognostic biomarker in patients with oligometastatic Castration-Sensitive prostate cancer.

Radiother Oncol. 2025-1

[9]
Prostate Cancer Risk Stratification in NRG Oncology Phase III Randomized Trials Using Multimodal Deep Learning With Digital Histopathology.

JCO Precis Oncol. 2024-10

[10]
Understanding the financial aspects of digital pathology: A dynamic customizable return on investment calculator for informed decision-making.

J Pathol Inform. 2024-4-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索