Suppr超能文献

卷曲螺旋信号螺旋的不稳定性对于可溶性鸟苷酸环化酶的信号转导是保守的。

Instability in a coiled-coil signaling helix is conserved for signal transduction in soluble guanylyl cyclase.

机构信息

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona.

出版信息

Protein Sci. 2019 Oct;28(10):1830-1839. doi: 10.1002/pro.3707. Epub 2019 Aug 27.

Abstract

How nitric oxide (NO) activates its primary receptor, α1/β1 soluble guanylyl cyclase (sGC or GC-1), remains unknown. Likewise, how stimulatory compounds enhance sGC activity is poorly understood, hampering development of new treatments for cardiovascular disease. NO binding to ferrous heme near the N-terminus in sGC activates cyclase activity near the C-terminus, yielding cGMP production and physiological response. CO binding can also stimulate sGC, but only weakly in the absence of stimulatory small-molecule compounds, which together lead to full activation. How ligand binding enhances catalysis, however, has yet to be discovered. Here, using a truncated version of sGC from Manduca sexta, we demonstrate that the central coiled-coil domain, the most highly conserved region of the ~150,000 Da protein, not only provides stability to the heterodimer but is also conformationally active in signal transduction. Sequence conservation in the coiled coil includes the expected heptad-repeating pattern for coiled-coil motifs, but also invariant positions that disfavor coiled-coil stability. Full-length coiled coil dampens CO affinity for heme, while shortening of the coiled coil leads to enhanced CO binding. Introducing double mutation αE447L/βE377L, predicted to replace two destabilizing glutamates with leucines, lowers CO binding affinity while increasing overall protein stability. Likewise, introduction of a disulfide bond into the coiled coil results in reduced CO affinity. Taken together, we demonstrate that the heme domain is greatly influenced by coiled-coil conformation, suggesting communication between heme and catalytic domains is through the coiled coil. Highly conserved structural imperfections in the coiled coil provide needed flexibility for signal transduction.

摘要

一氧化氮(NO)如何激活其主要受体α1/β1可溶性鸟苷酸环化酶(sGC 或 GC-1)尚不清楚。同样,刺激化合物如何增强 sGC 活性也知之甚少,这阻碍了心血管疾病新疗法的开发。NO 与 sGC 近 N 端的亚铁血红素结合,激活近 C 端的环化酶活性,产生 cGMP 产生和生理反应。CO 结合也可以刺激 sGC,但在没有刺激小分子化合物的情况下,刺激作用很弱,这些化合物共同导致完全激活。然而,配体结合如何增强催化作用仍有待发现。在这里,我们使用来自 Manduca sexta 的 sGC 的截断版本证明,中央螺旋-环-螺旋结构域,该蛋白质约 150,000 Da 的高度保守区域,不仅为异二聚体提供稳定性,而且在信号转导中具有构象活性。螺旋-环-螺旋中的序列保守性包括螺旋-环基序的预期七肽重复模式,但也存在不利于螺旋-环稳定性的不变位置。全长螺旋-环会降低 CO 对血红素的亲和力,而缩短螺旋-环会导致 CO 结合增强。引入双突变 αE447L/βE377L,预测用亮氨酸取代两个不稳定的谷氨酸,降低 CO 结合亲和力,同时增加整体蛋白稳定性。同样,将二硫键引入螺旋-环中会导致 CO 亲和力降低。总之,我们证明血红素结构域受螺旋-环构象的极大影响,这表明血红素和催化结构域之间的通讯是通过螺旋-环进行的。螺旋-环中高度保守的结构缺陷为信号转导提供了所需的灵活性。

相似文献

8
Probing domain interactions in soluble guanylate cyclase.探测可溶性鸟苷酸环化酶中的结构域相互作用。
Biochemistry. 2011 May 24;50(20):4281-90. doi: 10.1021/bi200341b. Epub 2011 May 3.

引用本文的文献

本文引用的文献

5
6
Genetic alterations in the NO-cGMP pathway and cardiovascular risk.NO-cGMP 通路中的遗传改变与心血管风险。
Nitric Oxide. 2018 Jun 1;76:105-112. doi: 10.1016/j.niox.2018.03.019. Epub 2018 Mar 27.
10
Coiled-coil length: Size does matter.卷曲螺旋长度:大小至关重要。
Proteins. 2015 Dec;83(12):2162-9. doi: 10.1002/prot.24932. Epub 2015 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验