Institute of Biochemistry, Graz University of Technology, Graz, Austria.
Max Planck Institute for Medical Research, Heidelberg, Germany.
Elife. 2018 Jun 5;7:e34815. doi: 10.7554/eLife.34815.
Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here, we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes.
生物通过多样化的信号网络来适应环境线索。为了感知和整合光以调节各种生物功能,感光蛋白以模块化的方式进化。这种模块化是光遗传学工具发展的目标,使细胞事件的控制具有高精度的时空精度。然而,对信号机制的有限理解阻碍了创新感光器-效应器对的合理设计。在这里,我们揭示了光反应调节的双鸟苷酸环化酶信号转导的分子细节。全长同源二聚体的不对称结构变化导致具有两种不同光激活状态的功能异源二聚体。辅助因子周围的结构变化导致远卷曲螺旋传感器-效应器接头的准平移重排。最终,这通过调节输出结构域的二聚体界面来调节酶活性。考虑到光二聚化在植物信号中的重要性,我们在细菌系统中不对称光激活的机制细节揭示了光受体进化适应的新方面。