Department of General Psychiatry, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Brain Behav. 2019 Sep;9(9):e01384. doi: 10.1002/brb3.1384. Epub 2019 Aug 14.
Individualized treatment prediction is crucial for the development and selection of personalized psychiatric interventions. Here, we use random forest classification via pretreatment clinical and demographical (CD), functional, and structural magnetic resonance imaging (MRI) data from patients with borderline personality disorder (BPD) to predict individual treatment response.
Before dialectical behavior therapy (DBT), 31 female patients underwent functional (three different emotion regulation tasks) and structural MRI. DBT response was predicted using CD and MRI data in previously identified anatomical regions, which have been reported to be multimodally affected in BPD.
Amygdala and parahippocampus activation during a cognitive reappraisal task (in contrasts displaying neural activation for emotional challenge and for regulation), along with severity measures of BPD psychopathology and gray matter volume of the amygdala, provided best predictive power with neuronal hyperractivities in nonresponders. All models, except one model using CD data solely, achieved significantly better accuracy (>70.25%) than a simple all-respond model, with sensitivity and specificity of >0.7 and >0.7, as well as positive and negative likelihood ratios of >2.74 and <0.36 each. Surprisingly, a model combining all data modalities only reached rank five of seven. Among the functional tasks, only the activation elicited by a cognitive reappraisal paradigm yielded sufficient predictive power to enter the final models.
This proof of principle study shows that it is possible to achieve good predictions of psychotherapy outcome to find the most valid predictors among numerous variables via using a random forest classification approach.
个体化治疗预测对于个性化精神干预措施的开发和选择至关重要。在这里,我们使用基于预处理的临床和人口统计学(CD)、功能和结构磁共振成像(MRI)数据的随机森林分类,对边缘型人格障碍(BPD)患者的个体治疗反应进行预测。
在接受辩证行为治疗(DBT)之前,31 名女性患者接受了功能(三种不同的情绪调节任务)和结构 MRI 检查。使用先前在 BPD 中报道的多模态受影响的解剖区域的 CD 和 MRI 数据来预测 DBT 反应。
在认知重评任务期间,杏仁核和海马旁回的激活(在显示情绪挑战和调节的神经激活对比中),以及 BPD 精神病理学的严重程度指标和杏仁核的灰质体积,提供了最佳的预测能力,而非反应者的神经元过度活跃。除了一个仅使用 CD 数据的模型外,所有模型的准确率都显著高于简单的全反应模型(>70.25%),敏感性和特异性均>0.7 和>0.7,阳性和阴性似然比均>2.74 和<0.36。令人惊讶的是,结合所有数据模式的模型仅排名第七。在功能任务中,只有认知重评范式引起的激活具有足够的预测能力,可以进入最终的模型。
这项初步研究表明,通过使用随机森林分类方法,从众多变量中找到最有效的预测因子,实现良好的心理治疗效果预测是有可能的。